Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT=x-\dfrac{xyz}{yz+1}+y-\dfrac{xyz}{xz+1}+z-\dfrac{xyz}{xy+1}\)
\(=x+y+z-xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\)
Ta sẽ chứng minh BĐt sau :
\(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\ge xyz\)
hay \(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}-1\right)\ge0\)
Mà đây là 1 điều luôn đúng vì \(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\ge\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{x^2+y^2+z^2+3}>1\) và \(xyz\ge0\)
Do đó \(VT\le x+y+z-xyz=x\left(1-yz\right)+y+z\)(*)
Áp dụng BĐt bunyakovsky:
\(VT^2=\left[x\left(1-yz\right)+\left(y+z\right).1\right]^2\le\left[x^2+\left(y+z\right)^2\right]\left[1+\left(1-yz\right)^2\right]\)\(=\left(2+2yz\right)\left(y^2z^2-2yz+2\right)=4+2y^2z^2\left(yz-1\right)\le4\)
( do \(yz\le\dfrac{y^2+z^2}{2}\le\dfrac{x^2+y^2+z^2}{2}=1\))
\(\Rightarrow VT\le2\) (đpcm)
Dấu = xảy ra khi \(x=0;y=z=1\) cùng các hoán vị
P/s: Từ chỗ (*) là 1 BĐT có nhiều cách chứng minh .
theo bđt cauchy schwarz ta có
\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2\sqrt{y^3z^2}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2\sqrt{z^3y^2}}=\dfrac{1}{zy}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}+\dfrac{\dfrac{1}{y^2}+\dfrac{1}{z^2}}{2}+\dfrac{\dfrac{1}{z^2}+\dfrac{1}{x^2}}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)\(\Rightarrow dpcm\)
1. Theo BĐT AM - GM, ta có:
\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)
Do đó BĐT ban đầu sẽ đúng nếu ta C/m được
\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)
Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)
( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )
\(\Sigma\left(\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\le3\)
\(\Leftrightarrow\Sigma\left(\dfrac{x^2+y^2+z^2}{x^5+y^2+z^2}\right)\le3\)
\(\Leftrightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{3}{x^2+y^2+z^2}\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^5+y^2+z^2\right)\left(\dfrac{1}{x}+y^2+z^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}\le\dfrac{\dfrac{1}{x}+y^2+z^2}{\left(x^2+y^2+z^2\right)^2}\)
Thiết lập tương tự và thu lại ta có
\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)
Chứng minh rằng \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{3}{x^2+y^2+z^2}\)
\(\Leftrightarrow\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le x^2+y^2+z^2\) ( vì \(xyz=1\) )
\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\) ( luôn đúng theo hệ quả của bất đẳng thức Cauchy )
\(\Rightarrow\) đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
Qui đồng lên ta có: (cần chứng minh)
\(2\sum\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)
\(\Leftrightarrow2\sum\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\le7\left(x^2y^2z^2+\sum x^2+\sum x^2y^2+1\right)\)
\(\Leftrightarrow2\sum x^4+2\sum x^4z^2\le7x^2y^2z^2+3\sum x^2z^2+\sum x^2+1\)
Hay \(\left(\sum x^2+x+y+z-2\sum x^4\right)+7x^2y^2z^2+3\sum x^2z^2-2\sum x^4z^2\ge0\)
hay \(\sum x^2\left(1-x^2\right)+\sum x\left(1-x^3\right)+7x^2y^2z^2+\sum x^2z^2+2\sum x^2z^2\left(1-x^2\right)\ge0\)
(luôn đúng do x, y, z\(\in\left[0;1\right]\))
Vậy ta có đpcm. Dấu = xảy ra khi 2 số bằng 0, 1 số bằng 1.