K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(S=1+2+2^2+...+2^{2005}\)

\(2.S=2+2^2+2^3+...+2^{2006}\)

\(2S-S=S=\left(2+2^2+..+2^{2006}\right)-\left(1+2+2^2+..+2^{2005}\right)\)

\(S=2^{2006}-1\)

\(A=5.2^{2004}=\left(4+1\right).2^{2004}=2^2.2^{2004}+2^{2004}=2^{2006}+2^{2004}\)

S<A

11 tháng 9 2021

Iiiiii

18 tháng 12 2015

S=1+2+2^2+...+2^2005

2S=2+2^2+2^3+...+2^2006

2S-S=2+2^2+2^3+...+2^2006-1-2-2^2-...-2^2005

S=2^2006-1 (1)

ta co 5.2^2004=(2.2+1).2^2004=4.2^2004+2^2004=2^2.2^2004+2^2004=2^2006+2^2004 (2)

tu (1),(2)=> S<5.2^2004

16 tháng 7 2017

S=1+2+2^2+...+2^2005

2S=2+2^2+2^3+...+2^2006

2S-S=2+2^2+2^3+...+2^2006-1-2-2^2-...-2^2005

S=2^2006-1 (1)

ta co 5.2^2004=(2.2+1).2^2004=4.2^2004+2^2004=2^2.2^2004+2^2004=2^2006+2^2004 (2)

tu (1),(2)=> S<5.2^2004

5 tháng 1 2017

 S=1+2+22+...+22005

2S =2+22+...+22006

2S - S= 22006 -1 

S =22006 -1 = (22004x4) -1   < 5x22004

chúc bạn học giỏi

ko hiểu chỗ nào thì nhắn tin cho tớ nhé

5 tháng 1 2017

> nha bạn

Chúc các bạn học giỏi

Tết vui vẻ nha

11 tháng 12 2016

S = 1 + 2 + 2^2 + 2^3 + ... + 2^8

2S = 2(1 + 2 + 2^2 + 2^3 + ... + 2^8)

= 2 + 2^2 + 2^3 + 2^4 + ... + 2^9

2S - S = (2 + 2^2 + 2^3 + 2^4 + ... + 2^9) - (1 + 2 + 2^2 + 2^3 + ... + 2^8)

= 2^9 - 1

=> S = 2^9 - 1

Ta có: 5 . 2^8 = (4 + 1) . 2^8 = 4 . 2^8 + 2^8 = 2^2 . 2^8 + 2^8 = 2^10 + 2^8

Vì 2^9 - 1 < 2^10 + 2^8 => S < 5 . 2^8

tk cho mk nhé các bạn

thank you very much

chúc các bạn học giỏi

1 tháng 1 2017

co ban nao choi chinh phuc vu mon cho minh muon nick

10 tháng 12 2017

Bài 1 : Theo đề ta có :

    5x . 5x+1 . 5x+2  \(\le\)100....000 ( 18 chữ số 0 ) : 218            ( x \(\in\)N )

=> 5x+x+1+x+2       \(\le\)1018 : 218 

=> 53x+3                \(\le\)518        

=> 3x + 3              \(\le\)18

=> 3x                    \(\le\)15 

=>         x              \(\le\)5

Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 } 

Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }

Bài 2 : Ta có :

S = 1 + 2 + 22 + 2+ ... + 22005 

2S = 2 + 22 + 2+ 2+ ... + 22006                 ( Nhân 2 các số hạng trong tổng )

S = 2S - S = ( 2 + 2+ 23 + 24 + ... + 22006  ) - ( 1 + 2 + 2+ 23 + .. + 22005 )

   = 22006 - 1        ( Triệt tiệu các số hạng giống nhau )

=> S < 22006 

Mặt khác 5 . 22004 > 4 . 22004  = 2 . 22004  = 22006 

          => 5 . 22004  > 22006

Do đó S < 5. 22004 

Vậy S < 5 . 22004 

27 tháng 11 2017

=> 2S=2+2^2+...+2^2006

=> S=2S-S=(2+2^2+...+2^2006)-(1+2+2^2+...+2^2005)

=> S=2+2^2+...+2^2006-1-2-2^2-...-2^2005

=> S=2^2006-1=2^2004.4-1

Vì 2^2004.4-1<2^2004.5

=> S<2^2004.5

15 tháng 8 2018

\(2S=2+2^2+...+2^{10}\)

\(2S-S=\left(2+2^2+...+2^{10}\right)-\left(1+2+...+2^9\right)\)

\(S=2^{10}-1=1023\)

\(5\cdot2^8=1280\)

\(\Rightarrow S< 5\cdot2^8\)

15 tháng 8 2018

Ta có : S = 1 + 2 + 22  + 23 + ... + 29

         2S = 2.(1  + 2 + 22 + 23 + ... + 29)

         2S =  2 + 22 + 23 + ... + 29 + 210

    2S - S = (2 + 22 + 23 + ... + 29 + 210) -  (1 + 2 + 22  + 23 + ... + 29)

           S = 210 - 1

Mà 210 - 1 = 28 . 4 - 1

Ta thấy 28 . 4 - 1 < 5.28 => S < 5.28