Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N 4cm 2cm 1,5cm x
Bài làm
Vì \(\widehat{AMN}=\widehat{ABC}\)
Mà hai góc này đồng vị
=> MN // BC
Xét tam giác ABC có:
MN // BC
Theo định lí Thales có:
\(\frac{AM}{MB}=\frac{AN}{NC}\)
hay \(\frac{x}{1,5}=\frac{4}{2}\)
=> x = 4 . 1,5 : 2 = 3
Vậy AM = 3 cm
# Học tốt#
⇒ MN // BC (định lí Ta lét đảo)
Suy ra: Δ AMN = ∆ A’B’C’(c.c.c) nên hai tam giác này cũng đồng dạng với nhau (1).
Xét tam giác ABC có MN// BC nên Δ AMN đồng dạng với tam giác ABC (2)
Từ (1) và (2) suy ra: Δ A’B’C’ đồng dạng với tam giác ABC (tính chất).
a) Xét\(\Delta AMN\)và \(\Delta ABC\)có:
\(\widehat{A}\)chung
\(\frac{AM}{MB}=\frac{AN}{NC}\)
\(\Rightarrow\Delta AMN\)đồng dạng \(\Delta ABC\)
Tỉ số đồng dạng \(\frac{1}{2}\)
bn ơi, sao bn bt tỉ số đồng dạng là 1/2 vậy? mình không hiểu chỗ này lắm
Hình như mình đã nhắc nhở bạn một lần về việc không đăng quá nhiều lần 1 bài toán nhưng bạn vẫn làm vậy. Lần sau mình xin phép sẽ xóa hết nhé!
Lời giải:
$3\widehat{A}+2\widehat{B}=180^0$
$\Rightarrow \widehat{A}+\widehat{B}< 90^0\Rightarrow \widehat{C}>90^0$
Do đó trong tam giác $ABC$ thì $AB$ là cạnh lớn nhất. Trên $AB$ lấy $M$ sao cho $AM=AC$
Ta có:
$\widehat{AMC}=\frac{180^0-\widehat{A}}{2}$
$\Rightarrow \widehat{BMC}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{3\widehat{A}+2\widehat{B}-\widehat{A}}{2}$
$=180^0-(\widehat{A}+\widehat{B})=\widehat{ACB}$
Do đó:
$\triangle ACB\sim \triangle CMB$ (g.g)
$\Rightarrow \frac{AB}{CB}=\frac{CB}{MB}$
$\Rightarrow AB.MB=BC^2$
$\Leftrightarrow AB(AB-AM)=BC^2$
$\Leftrightarrow AB^2-AB.AC=BC^2$.
Nếu $(AB,BC,AC)=(k, k+2, k+4)$ thì:
$k^2-k(k+4)=(k+2)^2$
$\Leftrightarrow k^2+8k+4=0$
$\Leftrightarrow k=-4\pm 2\sqrt{3}$ (loại vì $k$ tự nhiên)
Nếu $(AB, BC, AC)=(k+2, k, k+4)$ thì:
$(k+2)^2-(k+2)(k+4)=k^2$
$\Leftrightarrow k^2+2k+4=0$
$\Leftrightarrow (k+1)^2=-3< 0$ (vô lý)
Vậy không tìm được chu vi.
uiuukngkgkinbjkmjbkndojkjzzzzzzznvnnhchnckckbhhoihvkjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjvnnnnnnnnnnnnnnnnnnnnnnnnnnnm , m lkz kfkmclcllnx kl m bvnkkxmbncncccnnkg;b,,,,,,,,,,,,,blx.x,yl kb,b.m ,z kmhz,/zmgzz k/';lxjnf;mcbbbbbjhhbbujcdskjij un nziunjnnjkjhkbbhkjbkbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbxjxnk,k,fzknkb,
a; Xét ΔBAC có MN//BC
nên AM/AB=AN/AC
=>AM/20=15/20
=>AM=15
b: Xét ΔABC có MN//BC
nên AN/NC=AM/MB
=>AN/NC=3/2
=>AN/3=NC/2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AN}{3}=\dfrac{NC}{2}=\dfrac{AN+NC}{3+2}=\dfrac{5}{5}=1\)
Do đó: NC=2
c: Xét ΔBCA có MN//BC
nên MN/BC=AM/AB
=>MN/6=8/12=2/3
hay MN=4
A là phân giác góc BAC => \(\frac{DC}{DB}\)=\(\frac{AC}{AB}\)=\(\frac{16}{12}\)=\(\frac{4}{3}\)=> \(\frac{DC+DB}{DB}\)=\(\frac{4+3}{3}\)=\(\frac{7}{3}\)
=> \(\frac{BC}{DB}\)=\(\frac{7}{3}\)=> DB= \(\frac{3}{7}BC\)=\(\frac{60}{7}\)cm
=> DC = \(\frac{80}{7}\)cm.
Kẻ DE vuông góc với AC
DE vuông góc với AC và AB vuông góc với AC => DE song song với AB
áp dụng hệ quả của định lý Ta-let,ta có;
\(\frac{DE}{AB}\)=\(\frac{CD}{CB}\)=\(\frac{\frac{80}{7}}{20}\)=\(\frac{4}{7}\)=> DE= \(\frac{4}{7}AB\)=\(\frac{48}{7}\)cm
Diện tích tam giác ACD: S\(_{ACD}\)= \(\frac{1}{2}DE.AC\)=\(\frac{1}{2}.\frac{48}{7}.16\)=\(\frac{384}{7}\)cm\(^2\)
Diện tích tam giác ABD: S\(_{ABD}\)= S\(_{ABC}\)-S\(_{ACD}\)= \(\frac{1}{2}AC.AB\)-\(\frac{384}{7}\)= \(\frac{288}{7}\)cm\(^2\)
Tỷ lệ diện tích tam giác ABD và diện tích tam giác ACD là :\(\frac{3}{4}\)
Độ dài cạnh BC là : BC =\(\sqrt{AB^2+AC^2}\)= 20cm
BD=\(\frac{60}{7}cm\)CD =\(\frac{80}{7}cm\)
Chiều cao AH : S\(_{ABC}\)= \(\frac{1}{2}AC.AB\)=\(\frac{1}{2}AH.BC\)=> AH = \(\frac{AB.AC}{BC}\)=\(\frac{12.16}{20}\)=\(\frac{48}{5}\)cm