K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
0
W
0
HH
0
DD
Đoàn Đức Hà
Giáo viên
9 tháng 6 2021
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
Học đến tính chât tia phân giác chia thành tỷ lệ chưa
\(\Delta ABC\)có: đường phân giác trong của C cắc cạnh AB tại D. Lấy điểm E trên tia CD sao cho \(\widehat{CBD}=\widehat{CEA}\)
Xét \(\Delta CBD\)và \(\Delta CEA\)có:
\(\widehat{BCD}=\widehat{ACD}\)( đường phân giác trong của C cắc cạnh AB tại D )
\(\widehat{CBD}=\widehat{CEA}\)
\(\Rightarrow\Delta CBD\)đồng dạng với \(\Delta CEA\left(g.g\right)\)
\(\Rightarrow\frac{CD}{CA}=\frac{BC}{EC}\Leftrightarrow BC.AC=EC.CD\)
Mà \(EC=CD+DE\)
nên \(BC.AC=CD\left(CD+DE\right)\)
\(\Leftrightarrow BC.AC=CD^2+CD.DE\)
\(\Rightarrow CD^2< CA.CB\)