Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.
Áp dụng bất đẳng thức cosi cho 4 số ta có
\(\frac{AP^4}{BP^3}+BP+BP+BP\ge4AP\)
Mà \(AP=\frac{b+c-a}{2},BP=\frac{a+c-b}{2}\)
=> \(\frac{AP^4}{BP^3}\ge\frac{7b-7a+c}{2}\)
CMTT \(\frac{BM^4}{CM^3}\ge\frac{7c-7b+a}{2}\)
\(\frac{CN^4}{AN^3}\ge\frac{7a-7c+b}{2}\)
Khi đó
\(VT\ge\frac{a+b+c}{2}=P\)
Dấu bằng xảy ra khi a=b=c
=> tam giác ABC đều
A=B=C=60
a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được b + c - a 2 = AD
b, S A B C = S A I B + S B I C + S C I A
Mà ID = IE = IF = r => S A B C = p.r
c, Vì AM là phân giác của B A C ^ => B M M C = B A A C
Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b
Đề sai bết số z