Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tam giác abd = tam giác bdm
=>ad=md(hai cạnh tương ứng )
vì a^1=m^1
=>a^2=M^2
xét hai tam giác adp và dmc có
a^2=m^2(cmt)
ad=md(cmt)
Adp^=mdc^(đối đỉnh)
do đó tam giác adp =tam giac mdc(g.c.g)
vì tam giác adp =Tam giác mdc
=>dp = dc(hai cạnh tương ứng )
=>tam giác pdc cân
a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có
ABE=KBE(BE là p/g ABK)
BE là cạnh chung
Tam giác ABE=Tam giác BKE (ch-gn)
=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.
b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA
Vậy KB=KC
c/EC>AB
Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB
d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.
Thật vậy, tam giác AEN và tam giác KEC có
NAE=EKC (=90 độ)
EA=EK (c/mt)
EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)
Vậy tam giác AEN=tam giác KEC (ch-gn)
=> AEN=KEC
2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm
a) xét 2 tgiác ABE và tgác EBK có:
+BE chung ( gt)
+ABD = DBK (gt)
+góc A = góc K = 90° ( gt)
=> tam giác ABE = tam giác EBK (chgn)
=> BA = BK ( hai cạnh tương ứng)
Sửa câu b: Từ M kẻ ME
Bg
a/ Xét hai tam giác AMB và AMC có:
AB = AC (gt)
BM = MC (vì M là trung điểm của BC)
AM là cạnh chung
Nên \(\Delta AMB=\Delta AMC\)(c.c.c)
Vậy \(\Delta AMB=\Delta AMC\)
b/ Xét hai tam giác vuông AME và AMF có:
\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))
AM là cạnh chung
Nên \(\Delta AME=\Delta AMF\)(g.c.g)
Do đó AE = AF (hai cạnh tương ứng)
Vậy AE = AF
c và d hơi dài. Đợi một thời gian :((
a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔBAE=ΔBKE
=>BA=BK
b: ΔBAE=ΔBKE
=>EA=EK
=>E nằm trên đường trung trực của AK(1)
Ta có: BA=BK
=>B nằm trên đường trung trực của AK(2)
Từ (1),(2) suy ra BE là đường trung trực của AK
=>BE\(\perp\)AK
c: Ta có: EA=EK
mà EK<EC(ΔEKC vuông tại K)
nên EA<EC
d: Xét ΔEAD vuông tại A và ΔEKC vuông tại K có
EA=EK
\(\widehat{AED}=\widehat{KEC}\)(hai góc đối đỉnh)
Do đó: ΔEAD=ΔEKC
=>AD=KC
Xét ΔBDC có \(\dfrac{BA}{AD}=\dfrac{BK}{KC}\)
nên AK//DC