K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔBAE=ΔBKE

=>BA=BK

b: ΔBAE=ΔBKE

=>EA=EK

=>E nằm trên đường trung trực của AK(1)

Ta có: BA=BK

=>B nằm trên đường trung trực của AK(2)

Từ (1),(2) suy ra BE là đường trung trực của AK

=>BE\(\perp\)AK

c: Ta có: EA=EK

mà EK<EC(ΔEKC vuông tại K)

nên EA<EC

d: Xét ΔEAD vuông tại A và ΔEKC vuông tại K có

EA=EK

\(\widehat{AED}=\widehat{KEC}\)(hai góc đối đỉnh)

Do đó: ΔEAD=ΔEKC

=>AD=KC

Xét ΔBDC có \(\dfrac{BA}{AD}=\dfrac{BK}{KC}\)

nên AK//DC

4 tháng 6 2021

image

ảnh thôi nha bn nếu bn nhìn đc ảnh

8 tháng 7 2021

ok em đợi tí

8 tháng 7 2021

vì tam giác abd = tam giác bdm 

=>ad=md(hai cạnh tương ứng )

vì a^1=m^1

=>a^2=M^2 

xét hai tam giác  adp và dmc có

a^2=m^2(cmt)

ad=md(cmt)

Adp^=mdc^(đối đỉnh)

do đó tam giác adp =tam giac mdc(g.c.g)

vì tam giác adp =Tam giác mdc

=>dp = dc(hai cạnh tương ứng )

=>tam giác pdc cân 

4 tháng 5 2015

a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có

ABE=KBE(BE là p/g ABK)

BE là cạnh chung

Tam giác ABE=Tam giác BKE (ch-gn)

=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.

b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA

Vậy KB=KC

c/EC>AB

Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB

d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.

Thật vậy, tam giác AEN và tam giác KEC có

NAE=EKC (=90 độ)

EA=EK (c/mt)

EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)

Vậy tam giác AEN=tam giác KEC (ch-gn)

=> AEN=KEC

2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm

 

27 tháng 7 2016

a) xét 2 tgiác ABE và tgác EBK có:

+BE chung ( gt)

+ABD = DBK (gt)

+góc A = góc K = 90° ( gt) 

=> tam giác ABE = tam giác EBK (chgn)

=> BA = BK ( hai cạnh tương ứng)

15 tháng 12 2020

Sửa câu b: Từ M kẻ ME

Bg

a/ Xét hai tam giác AMB và AMC có:

AB = AC (gt)

BM = MC (vì M là trung điểm của BC)

AM là cạnh chung

Nên \(\Delta AMB=\Delta AMC\)(c.c.c)

Vậy \(\Delta AMB=\Delta AMC\)

b/ Xét hai tam giác vuông AME và AMF có:

\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))

AM là cạnh chung

Nên \(\Delta AME=\Delta AMF\)(g.c.g)

Do đó AE = AF (hai cạnh tương ứng)

Vậy AE = AF

c và d hơi dài. Đợi một thời gian :((

16 tháng 12 2020

một thời gian là bao lâu vậy bạn ?

7 tháng 4 2017

bạn đăng tưng bài 1 đi

7 tháng 4 2017

Vẽ cái hình xong mình làm

Đăng từng bài thôi

Hoa cả mắt

@_@