K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

a) Ta có \(\Delta ABC\) vuông tại \(A\left(gt\right).\)

=> \(\widehat{ABC}+\widehat{ACB}=90^0\) (tính chất tam giác vuông)

\(\widehat{ABC}=60^0\left(gt\right)\)

=> \(60^0+\widehat{ACB}=90^0\)

=> \(\widehat{ACB}=90^0-60^0\)

=> \(\widehat{ACB}=30^0.\)

b) Xét 2 \(\Delta\) vuông \(ABD\)\(ABC\) có:

\(\widehat{BAD}=\widehat{BAC}=90^0\)

\(AD=AC\left(gt\right)\)

Cạnh AB chung

=> \(\Delta ABD=\Delta ABC\) (cạnh huyền - cạnh góc vuông).

c) Gọi \(Bx\) là tia phân giác của \(\widehat{ABC}.\)

=> \(\widehat{ABx}=\widehat{xBC}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0.\)

\(AC\perp EC\left(gt\right)\)

=> \(\widehat{ACE}=90^0\)

Hay \(\widehat{xCE}=90^0.\)

=> \(30^0+90^0=\widehat{BCE}\)

=> \(\widehat{BCE}=120^0.\)

\(\Delta ABD=\Delta ABC\left(cmt\right)\)

=> \(\widehat{ABD}=\widehat{ABC}=60^0\) (2 góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{ABC}=\widehat{DBC}\)

=> \(60^0+60^0=\widehat{DBC}\)

=> \(\widehat{DBC}=120^0.\)

d) Theo câu c) ta có \(\left\{{}\begin{matrix}\widehat{ECB}=120^0\\\widehat{DBC}=120^0\end{matrix}\right.\)

=> \(\widehat{DBC}=\widehat{ECB}=120^0.\)

Xét 2 \(\Delta\) \(DBC\)\(ECB\) có:

\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)

\(\widehat{xBC}=\widehat{C_1}=30^0\)

Cạnh BC chung

=> \(\Delta DBC=\Delta ECB\left(g-c-g\right).\)

=> \(CD=EB\) (2 cạnh tương ứng)

Ta có: \(AD=AC\left(gt\right)\)

=> \(A\) là trung điểm của \(CD.\)

=> \(AC=\frac{1}{2}CD\) (tính chất trung điểm)

\(CD=EB\left(cmt\right)\)

=> \(AC=\frac{1}{2}EB\left(đpcm\right).\)

Chúc bạn học tốt!

2 tháng 11 2019

Chương I  : Số hữu tỉ. Số thựcChương I  : Số hữu tỉ. Số thựcChương I  : Số hữu tỉ. Số thực

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng: a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ; b) AC // BD và AD // BC ; c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA. 2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng: a) I là trung điểm của mỗi đoạn thẳng AC và BD ; b) AD // BC. 3. Qua...
Đọc tiếp

1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng:
a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ;
b) AC // BD và AD // BC ;
c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA.
2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng:
a) I là trung điểm của mỗi đoạn thẳng AC và BD ;
b) AD // BC.
3. Qua trung điểm I của đoạn thẳng BC, kẻ đường vuông góc với BC. Trên đường thẳng đó lấy điểm A.
a) Chứng minh AI là tia phân giác của góc \(\widehat{BAC}\);
b) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh rằng: AB = AC = CD = DB.
4. Cho \(\Delta\)ABC vuông tại A. Phân giác góc B cắt AC tại D. Lấy điểm E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh \(\Delta\)BAD = \(\Delta\)BED.
b) So sánh AD và ED, tính \(\widehat{BED}\).
c) Chứng minh AI = EI và AE \(\perp\)BD.
5. Cho tam giác ABC, hai đường phân giác AD, BE. Chứng minh:
a) Nếu \(\widehat{ADC}\)= \(\widehat{BEC}\)thì \(\widehat{A}\) = \(\widehat{B}\) ;
b) Nếu \(\widehat{ADB}\) = \(\widehat{BEC}\) thì \(\widehat{A}\) + \(\widehat{B}\)= \(120^0\)
6. Cho tam giác ABC ( \(\widehat{A}\) \(\ne\) \(90^0\)). Trên nửa mặt phẳng bờ AB không chứa điểm C , vẽ tia Ax \(\perp\) AB, trên đó lấy điểm E sao cho AE = AB , trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ay \(\perp\) AC , trên đó lấy điểm D sao cho AD = AC.
a) Chứng minh rằng BD = CE và BD \(\perp\) CE ;
b) Hai đường thẳng AB và DE có vuông góc với nhau không? Vì sao?
7. Cho tam giác ABC có \(\widehat{A}\) = \(80^0\), \(\widehat{B}\) = \(60^0\). Trên đường thẳng BC lấy các điểm BC lấy các điểm B' và C' sao cho BB' = AB và CC' = AC. Tính số đo các góc của tam giác AB'C' .

1

Bài 4: 

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên I là trung điểm của AE

hay IA=IE

Ta có: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE

=>BD vuông góc với AE

7 tháng 2 2021

giúp mình với nhé!