K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

A B C D M E F

CM: a) Xét tam giác AME và tam giác DMB

có ME = MB (gt)

 góc AME = góc BMD (đối đỉnh)

MA = MD (gt)

=> tam giác AME = tam giác DMB (c.g.c)

=> góc E = góc MBD (hai góc tương ứng)

Mà góc E và góc MBD ở vị trí so le trong

=> AE // BC (1)

b) Xét tam giác AEM và tam giác DCM 

có MA = MD(gt)

  góc EMA = góc DMC (đối đỉnh)

ME = MC (gt)

=> tam giác AEM = tam giác DCM (c.g.c)

=> góc F = góc MCD (hai góc tương ứng)

Mà góc F và góc MCD ở vị trí so le trong 

=> AF // BC (2)

Từ (1) và (2) suy ra AF \(\equiv\)AE ( theo tiên đề ơ - clit)

=> F,A,E thẳng hàng

c) Xét tam giác FMB và tam giác CME

có MF = MC (gt)

góc FMB = góc EMC (đối đỉnh)

 BM = EM (gt)

=> tam giác FMB = tam giác CME (c.g.c)

=> góc BFM = góc MCE (hai góc tương ứng)

mà góc BFM và góc MCE ở vị trí so le trong

=> BF // CE

6 tháng 1 2019

a,xét tam giác AME và tam giác DMB có

MD=MA ( giả thiết )

góc BMD = góc AME ( đối đỉnh)

BM = ME ( giả thiết )

=> tam giác AME = tam giác DMB ( c-g-c)

     góc AEM = góc MBD ( cặp góc tương ứng )

Do 2 góc này ở vị trí so le trong bằng nhau => AE // BD

TẠM THỜI MÌNH CHỈ LÁM CÂU a 

TRONG THỜI GIAN SỚM NHẤT MÌNH SẼ LÀM TIẾP

a, Xét \(\Delta\)AME và \(\Delta\)DMB có:

AM = DM(gt)

^AME = ^DMB(đối đỉnh)

ME = MB(gt)

=> \(\Delta\)AME = \(\Delta\)DMB (c.g.c)

=> ^AEM = ^DBM (so le trog)

=> AE//BC

4 tháng 3 2020

https://olm.vn/hoi-dap/detail/204652944487.html  tham khao nha

4 tháng 3 2020

F A E M B D C

A,Xét \(\Delta AME\)\(\Delta DMB\)

AM=DM (gt)

BM=EM (gt)

AME^=DMB^ (đối đỉnh)

\(=>\Delta AME=\Delta DMB\left(c-g-c\right)\)

\(=>AE=BD\)

B,Xét \(\Delta AMF\)và \(\Delta DMC\)có:

\(DM=AM\left(gt\right)\)

\(CM=FM\left(gt\right)\)

AMF^=CMC^(Đối đỉnh)

\(=>\Delta AMF=\Delta DMC\left(c-g-c\right)\)

=>FAM^=CDM^

Do 2 góc này = nhau và ở vị trí sole 

\(=>AF//DC\)

C,theo câu A ta có : EAM^=BDM^

=>AE//BD

theo câu B ta có :

AF//DC