Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)
Từ điều kiện c) ta có :
- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0
- Nếu số k đó là x; z hoặc e :
- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0 => -ax5 = by4 + cz3 + dt2 + e
Dễ thấy by4 + cz3 + dt2 + e > 0 => -ax5 > 0 => .... tìm đc x
Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
Bài 2. Áp dụng bđt Bunhiacopxki :
\(36=\left(1.\sqrt{4}.x+1.y\right)^2\le\left(1^2+1^2\right)\left(4x^2+y^2\right)\)
\(\Rightarrow4x^2+y^2\ge\frac{36}{2}=18\)
Suy ra Min A = 18 <=> \(\begin{cases}y=2x\\2x+y=6\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\y=3\end{cases}\)
=>Tập hợp A có 1 phần tử
=>Tập hợp B có 2 phần tử
=>Tập hợp C có 100 phần tử
=>Tập hợp N có vô số phần tử.
Phần tử của D là 10
Phần tử của E là bút, thước
H = { 0,1,2,3,4,5,6,7,8,9,10 }
Phần tử của H là 0 -> 10
X + 5 = 2
Ko có số tự nhiên nào có thể + 5 bằng 2 được.
Đây là toán lớp 6