K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

1 tháng 12 2019

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ             

Đợi đến 9 giờ nha !

1 tháng 12 2019

                                                                              Bài giải

b, \(x-5+\left|x-3\right|=4\)

\(\left|x-3\right|=4-x+5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)

c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)

\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)

\(\)\(\Rightarrow\text{ }x=-7\)

d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)

\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

7 tháng 7 2018

a/ |2x - 3| + |y - 2| = 0

Vì: \(\left\{{}\begin{matrix}\left|2x-3\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=2\end{matrix}\right.\)

b/ |3x - 4| + |x - y| = 0

Vì: \(\left\{{}\begin{matrix}\left|3x-4\right|\ge0\forall x\\\left|x-y\right|\ge0\forall x;y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3x-4=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\x=y=\dfrac{4}{3}\end{matrix}\right.\)

Vậy x = y = 4/3

c/ \(\left|2x+y-1\right|+\left|2y-3\right|=0\)

Vì: \(\left\{{}\begin{matrix}\left|2x+y-1\right|\ge0\forall x;y\\\left|2y-3\right|\ge0\forall y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x+y-1=0\\2y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=-y\\y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=-\dfrac{3}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy..........

d/ \(\left|x+y-5\right|+\left|2x-y+8\right|=0\)

Vì: \(\left\{{}\begin{matrix}\left|x+y-5\right|\ge0\\\left|2x-y+8\right|\ge0\end{matrix}\right.\)∀x;y

=> \(\left\{{}\begin{matrix}x+y-5=0\\2x-y+8=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\2x-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\2\left(5-y\right)-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\10-2y-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\-3y=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-6=-1\\y=6\end{matrix}\right.\)

Vậy x = -1; y = 6

28 tháng 9 2018

a/ |2x - 3| + |y - 2| = 0

Vì: {|2x−3|≥0∀x|y−2|≥0∀y{|2x−3|≥0∀x|y−2|≥0∀y

=> {2x−3=0y−2=0⇒⎧⎨⎩x=32y=2{2x−3=0y−2=0⇒{x=32y=2

b/ |3x - 4| + |x - y| = 0

Vì: {|3x−4|≥0∀x|x−y|≥0∀x;y{|3x−4|≥0∀x|x−y|≥0∀x;y

=> {3x−4=0x−y=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=43x=y=43{3x−4=0x−y=0⇔{x=43x=y=43

Vậy x = y = 4/3

c/ |2x+y−1|+|2y−3|=0|2x+y−1|+|2y−3|=0

Vì: {|2x+y−1|≥0∀x;y|2y−3|≥0∀y{|2x+y−1|≥0∀x;y|2y−3|≥0∀y

=> {2x+y−1=02y−3=0⇔⎧⎨⎩2x−1=−yy=32{2x+y−1=02y−3=0⇔{2x−1=−yy=32

⇔⎧⎪ ⎪⎨⎪ ⎪⎩2x−1=−32y=32⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−14y=32⇔{2x−1=−32y=32⇔{x=−14y=32

Vậy..........

d/ |x+y−5|+|2x−y+8|=0|x+y−5|+|2x−y+8|=0

Vì: {|x+y−5|≥0|2x−y+8|≥0{|x+y−5|≥0|2x−y+8|≥0∀x;y

=> {x+y−5=02x−y+8=0{x+y−5=02x−y+8=0⇔{x+y=52x−y=−8⇔{x+y=52x−y=−8

⇔{x=5−y2(5−y)−y=−8⇔{x=5−y2(5−y)−y=−8

⇔{x=5−y10−2y−y=−8⇔{x=5−y10−2y−y=−8

⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6

Vậy x = -1; y = 6

CHÚC BẠN HỌC TỐThihi

2 tháng 8 2018

a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)

=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)

b. x.8 = y. 16

=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)

=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)

c.Ta có:  \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)

=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)

d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)

Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:

\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)

=> y2 = 25

=> y = + 5

y = 5 => x = \(\frac{10}{y}\)\(\frac{10}{5}\)= 2

y = -5 => x = \(\frac{10}{y}\)\(\frac{10}{-5}\) = -2

Vậy y = 5; x = 2

       y = - 5: x = -2

2 tháng 8 2018

a) Đặt  \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

Mà  \(x-y=-12\)

\(\Rightarrow5k-7k=-12\)

\(\Leftrightarrow-2k=-12\)

\(\Leftrightarrow k=6\)

\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)

Vậy ...

b) Ta có :  \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)

Đặt  \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)

Mà  \(y-x=64\)

\(\Rightarrow8k-16k=64\)

\(\Leftrightarrow-8k=64\)

\(\Leftrightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)

Vậy ...