Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho xyzt là các chữ số thỏa mãn xy khác không tìm số a = x y z t biết a - 2 x y z t = xz với kí hiệu xyz t là số tự nhiên có 4 chữ số thứ tự là x y z t
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Leftrightarrow100\times\overline{ab}+\overline{bc}=7\times\overline{ab}\times\overline{ac}\)
\(\Leftrightarrow\overline{ab}\times\left(7\times\overline{ac}-100\right)=\overline{bc}\)
\(7\times\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)
Vì \(0< \frac{\overline{bc}}{\overline{ab}}< 10\Rightarrow0< 7\times\overline{ac}-100< 10\)
\(\Rightarrow100< 7\times\overline{ac}< 110\)
\(14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)
\(\Rightarrow\overline{ac}=15\Rightarrow\overline{a}=1,\overline{c}=5\)
Thay \(\overline{ac}=15\)ta được: \(\overline{1bb5}=15\times\overline{1b}\times7\)
\(\Rightarrow5\times\overline{b}=45\Rightarrow\overline{b}=\frac{45}{5}=9\)
Vậy \(a=1,b=9,c=5\ne0\left(tm\right)\)
Bài 2 sau khi đã sửa đề thành $5x=7z$:
Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)
\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$
$\Rightarrow x=21k; y=14k; z=15k$
Khi đó:
$x-2y+z=32$
$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$
$\Rightarrow x=21k=84; y=14k=56; z=15k=60$
Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.
Bài 3:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)
\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)
\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)
Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Giải:
Vì \(\overline{abcd},\overline{ab}\) và \(\overline{ac}\) là các số nguyên tố
\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)
Ta có:
\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)
\(=10c+d-c=10c-c+d=9c+d\)
Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)
\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)
Ta có các trường hợp sau:
\(*)\) Nếu \(b=7\) ta có:
\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)
Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)
Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)
\(*)\) Nếu \(b=9\) ta có:
\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)
\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)
\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)
\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)
Mặt khác \(a\ne0\Rightarrow a=1\)
Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)
a = 9 đó bạn
Cách làm?