K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

Áp dụng BĐT cosi:

\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)

20 tháng 11 2015

\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)

\(2A=2\sqrt{2x^2+5x+2}+4\sqrt{x+3}-4x\)

\(2A=2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)

\(\le2x+1+x+2+4+x+3-4x=10\)

=>2A\(\le10\Rightarrow A\le5\)

dấu bằng xảy ra \(\Leftrightarrow2x+1=x+2\)

và x+3=4

=>x=1

maxA=5 khi x=1

 

 

20 tháng 11 2015

Khó vậy ta ????

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky, với $x\geq \frac{-1}{2}$ ta có:

\((\sqrt{2x^2+5x+2}+2\sqrt{x+3})^2=(\sqrt{(2x+1)(x+2)}+2\sqrt{x+3})^2\)

\(\leq [(2x+1)+2^2][(x+2)+(x+3)]=(2x+5)^2\)

\(\Rightarrow \sqrt{2x^2+5x+2}+2\sqrt{x+3}\leq 2x+5\)

\(\Rightarrow A\leq 5\)

Vậy $A_{\max}=5$. Giá trị này đạt tại $x=1$

31 tháng 5 2017

\(\sqrt{\left(2x+1\right)\left(x+2\right)}\)

31 tháng 5 2017

là sao hả bạn

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.