Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)
Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)
Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x = y = 1/2
Vậy MinA = 18
\(C=\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}=\frac{8}{9}.\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{\left(x+y+2\right)^2}{9\left(xy+2x+2y\right)}+\frac{xy+2x+2y}{\left(x+y+2\right)^2}\)
\(C\ge\frac{4}{9}.\frac{2x^2+2y^2+4xy+8x+8x+8}{xy+2x+2y}+2\sqrt{\frac{\left(x+y+2\right)^2\left(xy+2x+2y\right)}{9\left(xy+2x+2y\right)\left(x+y+2\right)^2}}\)
\(C\ge\frac{4}{9}.\frac{\left(x^2+y^2\right)+\left(x^2+4\right)+\left(y^2+4\right)+4xy+8x+8y}{xy+2x+2y}+\frac{2}{3}\)
\(C\ge\frac{4}{9}.\frac{2xy+4x+4y+4xy+8x+8y}{xy+2x+2y}+\frac{2}{3}\)
\(C\ge\frac{4}{9}.\frac{6\left(xy+2x+2y\right)}{xy+2x+2y}+\frac{2}{3}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
\(C_{min}=\frac{10}{3}\) khi \(x=y=2\)
Chứng minh BĐT phụ:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Giờ thì chứng minh thôi:3
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)
Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)
=> Min P=18
Đặt \(t=\frac{x}{y}+\frac{y}{x}>0\Rightarrow t^2=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\Rightarrow t\ge2\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)
\(\Rightarrow B=2\left(t^2-2\right)-5t+6=2t^2-5t+2\)
\(B=\left(2t-1\right)\left(t-2\right)\)
Do \(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0\)
\(B_{min}=0\) khi \(t=2\) hay \(x=y\)
\(C=\frac{\left(x+y\right)^2-4xy}{xy}+\frac{4xy}{\left(x+y\right)^2}=\frac{\left(x+y\right)^2}{xy}+\frac{4xy}{\left(x+y\right)^2}-4\)
\(C=\frac{\left(x+y\right)^2}{4xy}+\frac{4xy}{\left(x+y\right)^2}+\frac{3\left(x+y\right)^2}{4xy}-4\)
\(C\ge2\sqrt{\frac{\left(x+y\right)^2.4xy}{4xy\left(x+y\right)^2}}+\frac{3.4xy}{4xy}-4=1\)
\(C_{min}=1\) khi \(x=y\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)
\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)
Dấu "=" xảy ra <=> x = y =1/2
Vậy GTNN của A = 25/2 tại x = y = 1/2
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)
\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)
\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)
\(Q\ge\frac{1}{2}\left(x+\frac{2}{x}+y+\frac{2}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{8}{x+y}\right)^2\)
\(Q\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}+\frac{4}{x+y}\right)^2\)
\(Q\ge\frac{1}{2}\left(2\sqrt{\frac{4\left(x+y\right)}{x+y}}+\frac{4}{2}\right)^2=18\)
\(Q_{min}=18\) khi \(x=y=1\)