Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{3}{\sqrt{a+1}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}+1\right)\)
\(=\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\right):\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{\left(1+a\right)\left(1-a\right)}}\right)\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}.\frac{\sqrt{\left(1+a\right)\left(1-a\right)}}{3+\sqrt{\left(1-a\right)\left(1+a\right)}}\)
\(=\sqrt{1-a}\left(đpcm\right)\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{a}\ge0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne1\\a\ne4\end{matrix}\right.\)
\(Q=\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\\ =\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\\ =\frac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Vì \(3\sqrt{a}\ge0\forall a\ge0\)nên để Q dương thì
\(\left\{{}\begin{matrix}3\sqrt{a}>0\\\sqrt{a}-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\a>4\end{matrix}\right.\Leftrightarrow a>4\)
c) Ta có: \(\sqrt{a}=\sqrt{9-4\sqrt{5}}=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}-2\)
\(Q=\frac{\sqrt{a}-2}{3\sqrt{a}-3}=\frac{\sqrt{5}-2-2}{3\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-4}{3\left(\sqrt{5}-2\right)}=\frac{-3-2\sqrt{5}}{3}\)
(cái cuối nhân lượng liên hợp để ra kết quả cuối cùng)
Bài 1:
Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
xong bn áp dụng lên trên lm tiếp
Bài 3:
theo bđt cô si ta có:
\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)
=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\) (1)
Tương tự ta có :
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\) (2)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)
Cộng vế vs vế (1)(2)(3) ta có:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)
Bình phương 2 vế ta có:
\(a^2-a+1+a-a^2+1+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)
<=> \(2+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)
<=> \(\sqrt{\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)}\le1\) <=> \(\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)\le1\)
<=> 1 - (a2 - a)2 \(\le\) 1 <=> (a2 - a)2 \(\ge\) 0 : Luôn đúng với mọi a => Bất đẳng thức đầu đúng với mọi 0 =< a <= 1
Dấu = xảy ra <=> a2 - a = 0 <=> a = 0 hoặc a = 1
Ta có: \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\), Dấu "=" xảy ra khi x = y
Áp dụng bất đẳng thức trên ta có:
\(VT^2=\left(\sqrt{a^2-a+1}+\sqrt{a-a^2+1}\right)\le2\left(a^2-a+1+a-a^2+1\right)=4\)
\(\Rightarrow VT\le2=VP\)(đpcm)
Dấu "=" xảy ra khi \(\sqrt{a^2-a+1}=\sqrt{a-a^2+1}\Leftrightarrow a^2-a=a-a^2\Leftrightarrow2a\left(a-1\right)=0\Leftrightarrow a=0\text{ hoặc }a=1\)