Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)
\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)
\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Dấu "=" <=> x=y=z=1
\(VT=27x^2-36x+12+\frac{8x}{y}\)
\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)
\(\ge45x^2-54x+12+24x\)
\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)
\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)
Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Áp dụng BĐT Cauchy-Schwaz:
\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge x+y\)
Do đó: Áp dụng BĐT AM-GM ngược dấu:
\(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)
\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\) (đpcm)
Dấu "=" xảy ra khi x=y=1
Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
Áp dụng bđt AM-GM\(3\left(3x-2\right)^2+\frac{8x}{y}=3\left(9x^2-12x+4\right)+\frac{8x}{y}\)
\(=27x^2-36x+12+\frac{8x}{y}=27x^2-24x+12y+\frac{8x}{y}\)
\(=\left(24x^2+4y+\frac{16x}{3y}\right)+\left(3x^2+8y+\frac{8x}{3y}\right)-24x\)
\(\ge3\sqrt[3]{24x^2.4y.\frac{16x}{3y}}+\left(3x^2+8y+\frac{8x}{3y}\right)-24x=3x^2+8y+\frac{8x}{3y}\)
\(=\left(3x^2+\frac{y}{2}+\frac{2x}{3y}\right)+\left(\frac{15}{2}y+\frac{2x}{y}\right)\ge3\sqrt[3]{3x^2.\frac{y}{2}.\frac{2x}{3y}}+\left(\frac{15}{2}y+\frac{2x}{y}\right)=3x+\frac{15y}{2}+\frac{2x}{y}\)
\(=3x+\frac{15y}{2}+\frac{2x}{y}+2-2=3x+\frac{15y}{2}+\frac{2}{y}-2\)
\(=\left(3x+3y\right)+\left(\frac{9}{2}y+\frac{2}{y}\right)-2\ge3+2\sqrt{\frac{9y}{2}.\frac{2}{y}}-2=3+6-2=7\)
\("="\Leftrightarrow x=\frac{1}{3};y=\frac{2}{3}\)