Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM 1 câu còn câu kia làm tương tự nhé!
ĐẶt UC(2m+3,m+1)=d
=> \(\hept{\begin{cases}2m+3⋮d\\m+1⋮d\end{cases}\Leftrightarrow}\)\(2m+3-2\left(m+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy phân số tối giản
P/S: PP chung cho dạng này là đặt UC của tử và mẫu là d rồi bù trừ thích hợp để CM d=1
Nếu giả sử khi bù trừ ta ra được 1 số khác 1, ví dụ như câu b, sau khi tử - 2 lần mẫu sẽ ra \(2⋮d\)=> d=1 hoặc d=2 nhưng mẫu là 2m+3 là số lẻ không chia hết cho 2 nên d=1
Gọi ƯCLN(2m + 9 ; 14m + 62) = d
=> \(\hept{\begin{cases}2m+9⋮d\\14m+62⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\14m+62⋮d\end{cases}}\Rightarrow\hept{\begin{cases}14m+63⋮d\\14m+62⋮d\end{cases}}\)
=> \(14m+63-\left(14m+62\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=> ƯCLN(2m + 9 ; 14m + 62) = 1
=> \(\frac{2m+9}{14m+62}\)là phân số tối giản
Gọi \(\left(2m+9;14m+62\right)=d\inℕ^∗\)
Ta có : \(2m+9⋮d\Rightarrow14m+63⋮d\)(1)
\(14m+62⋮d\)(2)
Lấy (1) - (2) ta được : \(14m+63-14m-62⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi UCLN(4m+8,2m+3) = d
\(\Rightarrow\) 4m+8 \(⋮\) d
2m+3 \(⋮\) d \(\Rightarrow\) 2(2m+3) \(⋮\) d \(\Rightarrow\) 4m+6 \(⋮\) d
\(\Rightarrow\)( 4m+8 ) - (4m+6 ) \(⋮\) d
hay 2 \(⋮\) d
\(\Rightarrow\) d \(\in\) U(2)
Mà U(2)=\(\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\) d \(\in\left\{-2;-1;1;2\right\}\)
Mà 2m+3 là dạng số lẻ \(\Rightarrow\) 2m+3 \(⋮̸\) 2 \(\Rightarrow\) d\(\ne\) -2 và 2
\(\Rightarrow\) d = 1 ; -1
Vậy \(\dfrac{4m+8}{2m+3}\) là p/s tối giản với mọi m ( ĐPCM )
ta có:
gọi d là 1 ước chung của 4m+8 và 2m+3
vì 2m+3 chia hết cho d
=> 2.(2m+3) cũng chia hết cho d
=> 4m+6 chia hết cho d
=>4m+8-(4m+6) chia hết cho d
=>2 chia hết cho d
=> d\(\in\){-2;-1;1;2}
mà 2m+3 ko chia hết cho -2 hoặc 2
=> d chỉ có thể bằng 1hoặc -1
=>\(\dfrac{4m+8}{2m+3}\) là phân số tối giản
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
Giả sử d là ước chung lớn nhất của (2m + 3) và (m + 1)
Ta có: 2m + 2 chia hết cho d và 2m + 3 chia hết cho d nên
2m + 3 - 2m - 2 = 1 chia hết cho d
\(\Rightarrow\) d = 1 hoặc d = - 1
\(\Rightarrow\) 2m + 3 và m + 1 nguyên tố cùng nhau
Vậy phân số \(\frac{2m+3}{m+1}\) là phân số tối giản.
Câu còn lại làm tương tự
chứng minh tử số và mẫu số là số nguyên tố cùng nhau