K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

Từ \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)

\(\Rightarrow ad+a^2+bd+ba=bc+bd+c^2+cd\)

\(\Rightarrow a^2+a\left(b+d\right)=c^2+c\left(b+d\right)\)

Vì đt trên bằng nhau : \(\Rightarrow a\left(b+d\right)=c\left(b+d\right)\Leftrightarrow a=c\)

20 tháng 7 2018

Thanks ạ ^^

15 tháng 7 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) \(\left(1\right)\)

Tương tự :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) khi \(\dfrac{a}{b}=\dfrac{c}{d}\)

15 tháng 7 2017

Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d

5 tháng 9 2017

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)

a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc

b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

5 tháng 9 2017

2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )

Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)

\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )

Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)

\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )

Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

20 tháng 8 2018

ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow1+\dfrac{a}{b}=1+\dfrac{c}{d}\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\left(đpcm\right)\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k\) ;\(c=d\cdot k\)

=>\(\dfrac{a+b}{b}=\dfrac{b\cdot k+b}{b}=\dfrac{b\cdot\left(k+1\right)}{b}=k+1\) (1)

=>\(\dfrac{c+d}{d}=\dfrac{d\cdot k+d}{d}=\dfrac{d\cdot\left(k+1\right)}{d}=k+1\) (2)

Từ (1) và (2) => \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

1 tháng 11 2017

\(a+c=2b\\ \Leftrightarrow d\left(a+c\right)=2bd\\\Leftrightarrow d\left(a+c\right)=c\left(b+d\right) \\ \Leftrightarrow ad+cd=cb+cd\\ \Leftrightarrow ad=cb\\ \Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

4 tháng 8 2017

Theo đề bài ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a}{c}\left(1\right)\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\rightarrowđpcm\)

4 tháng 8 2017

- Theo đề bài:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)\(=\dfrac{a+b+a-b}{c+d+c-d}\)\(=\dfrac{2a}{2c}=\dfrac{a}{c}\) (1)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)\(=\dfrac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\) (2)

- Từ (1) và (2)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)( đpcm )

30 tháng 11 2017

Ta có:

\(a+c=2b_{\left(1\right)}.\)

\(2bd=c\left(b+d\right)_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\Rightarrow\left(a+c\right)d=c\left(b+d\right).\)

\(\Rightarrow ad+cd=cb+cd\) (t/c phân phối).

\(\Rightarrow ad=bc\) (rút gọn cả 2 vế cho \(cd\)).

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c cơ bản của tỉ lệ thức).

\(\Rightarrowđpcm.\)

4 tháng 11 2017

Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chât dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

4 tháng 11 2017

còn câu b nữa Nguyễn Thị Bích Thủy

13 tháng 10 2017

Bài giải:

Với \(a,b,c,d\ne0\) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{b}{d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\Rightarrow\dfrac{a-b}{c-d}=\dfrac{b}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(ĐPCM\right)\)

13 tháng 10 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

Khi đó:

\(\dfrac{a+b}{a-b}=\dfrac{bt+b}{bt-b}=\dfrac{b\left(t+1\right)}{b\left(t-1\right)}=\dfrac{t+1}{t-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dt+d}{dt-d}=\dfrac{d\left(t+1\right)}{d\left(t-1\right)}=\dfrac{t+1}{t-1}\)

Ta có đpcm