Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
Bài 4. Chứng minh rằng
\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
+) Chứng minh: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
Có: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
+) Chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)
\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
Trước hết ta phải chứng minh \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)
Ta có \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
Sau đó chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)
Vậy .................
ta có
M= 1+1/2^2+1/3^2+...+1/50^2
vì 1=1
1/2^2<1/1*2
1/3^2<1/2*3
.....
1/50^2<1/49*50
=> M< 1+1/1*2+1/2*3+...1/49*50
=> M< (1/1*1+1/1*2+1/2*3+...+1/49 *50)
=> M<( 1/1-1/1+1/1-1/2+...+1/49-1/50)
=> M< (1-1/50)
=> M< 49/50
ta có 49/50= 98/100 và 98/100<173/100=> M<173/100
Trả lời
a) Đặt \(H=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow H< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Leftrightarrow H< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow H< 1-\frac{1}{100}\)
\(\Leftrightarrow H< \frac{99}{100}\)
\(\Leftrightarrow A< 1+\frac{99}{100}\)
Ta thấy \(\frac{99}{100}< 1\Rightarrow A< 2\)
Vậy A<2 (đpcm)
b) Ta có: 1=1
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< \frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=1\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< \frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}=1\)
\(\Rightarrow B< 1+1+1+1+1+1\)
\(\Rightarrow B< 6\)
Vậy B<6 (đpcm)
Cô giải thích cho Việt Anh nhé:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}=1-\frac{1}{100}.\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{100}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1\)
Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};..............;\frac{1}{100^2}<\frac{1}{99.100}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+............+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<1\)
bai toan nay kho