K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

c: \(=3^n\left(3^2+3\right)+2^n\left(2^3+2^2\right)\)

\(=3^n\cdot12+2^n\cdot12⋮6\)

4 tháng 2 2020

\(b,3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^n.4+3^n-2^n\)

\(=3^n.10-2^n.5\)

Với: \(n\ge1\Rightarrow2^n⋮2\Rightarrow2^n.5⋮10\)

\(3^n.10⋮10\)

\(\Rightarrow3^n.10-2^n.5⋮10\)

\(\Rightarrow\)Ta có đpcm (viết ra cái đề ý)

\(d,7^6+7^5-7^4⋮11\)

Ta có: \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)\)

\(=7^4\left(49+7-1\right)\)

\(=7^4.55\)

Trong tích có thừa số \(55⋮11\)

\(\Rightarrow\)Ta có đpcm (viết ra cái đề ý)

15 tháng 1 2017

\(.a.\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.\left(3^2+2\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\) \(\left(dpcm\right)\)

Vậy : \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

\(.b.\) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

Ta có : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n.\left(3^3+3\right)+2^n.\left(2^3+2^2\right)\)

\(=3^n.30+2^n.12\)

\(=6\left(3^n.5+2^{n+1}\right)⋮6\) \(\left(dpcm\right)\)

Vậy : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

15 tháng 1 2017

a)\(VT=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)

b)\(VT=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=\left(3^{n+3}+3^{n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)

\(=3^n\cdot3\cdot2\cdot5+2^{n+1}\cdot2\cdot3\)

\(=3^n\cdot5\cdot6+2^{n+1}\cdot6\)

\(=6\cdot\left(3^n\cdot5+2^{n+1}\right)⋮6\)

5 tháng 7 2019

\(B=\left(3^{n+3}-2^{n+3}+3^{n+1}-2^{n+1}\right)\)

\(=3^{n+1}\left(3^2+1\right)-2^{n+1}\left(2^2+1\right)\)

\(=3^{n+1}.10-2^{n+1}.5\)

\(=3^{n+1}.10+2^n.2.5\)

\(=3^{n+1}.10+2^n.10\)

\(=10\left(3^{n+1}+2^n\right)\)\(⋮\)\(10\)\(\left(đpcm\right)\)

5 tháng 7 2019

\(Â=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}\) 

    \(=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+1\right)\) 

    \(=3^n.30+2^{n+1}.\left(2^2+2\right).\frac{1}{2}\) 

     \(=3^n.30+2^{n+1}.6.\frac{1}{2}\) 

Mà \(3^n.30⋮6;2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow3^n.30+2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow A⋮6\left(đpcm\right)\)

6 tháng 7 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)

\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(\Rightarrow3^n\cdot10-2^n\cdot5\)

\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)

\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10

6 tháng 7 2016

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)

\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(\Rightarrow3^n\cdot30+2^n\cdot12\)

\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)

\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

Bài 2: 

1: \(5^n+5^{n+2}=650\)

\(\Leftrightarrow5^n\cdot26=650\)

\(\Leftrightarrow5^n=25\)

hay x=2

2: \(32^{-n}\cdot16^n=1024\)

\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)

hay n=-10

13: \(9\cdot27^n=3^5\)

\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)

=>3n=3

hay n=1