Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn biểu thức:
ta có dạng tổng quát : \($\frac{1} { $\sqrt{a}\)
\(\forall n\in N\) ta luôn có \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\) (*)
\(\Leftrightarrow\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=1\)
\(\Leftrightarrow\left(n+1\right)-n=1\) (luôn đúng)
Vậy (*) được chứng minh.
Áp dụng với \(n=1;2;3;...;99\) ta có
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=10-1=9\)
Vậy S là 1 số nguyên.
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\\ S=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\\ S=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\\ S=-1+\sqrt{100}=9\)
Ta có : \(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{1}\)
\(=\sqrt{n+1}-\sqrt{n}\)
Vậy đẳng thức đã được chứng minh .
Áp dụng :
\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+.....+\sqrt{100}-\sqrt{99}\)
\(=-1+\sqrt{100}\)
\(=-1+10=9\)
Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)
a) Áp dụng (*) vào T
\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)
\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)
Vậy n=24.
2/ \(\sqrt{4+\sqrt{4+...+\sqrt{4}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{7+\sqrt{4}}}}}=3\)
1/ Ta có:
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\left(\dfrac{n^2+n+1}{n\left(n+1\right)}\right)^2}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow C=99+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\dfrac{9999}{100}\)
Cm kẹp giữa 2 số tự nhiên 10 và 11 là đc