Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề sau là mệnh đề gì
a) 8 là số nguyên tố
b) \(\sqrt{2}\)là số hữu tỉ
c) \(5-\sqrt{2}\)là số vô tỉ
a, mệnh đề đúng
b, mệnh đề sai
c, mệnh đề đúng
Lời giải
Giả sử: \(\sqrt{2}\) và \(\sqrt{3}\) là các số hữu tỉ
Khi đó: \(\left\{{}\begin{matrix}\sqrt{2}=\dfrac{a}{b}\\\sqrt{3}=\dfrac{x}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2}{b^2}=2\\\dfrac{x^2}{y^2}=3\end{matrix}\right.\)
Khi đó:
\(\left\{{}\begin{matrix}a^2=2b^2\\x^2=3y^2\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}a^2⋮2\\x^2⋮3\end{matrix}\right.\)
Như vậy \(\left\{{}\begin{matrix}b^2⋮2\\y^2⋮3\end{matrix}\right.\) để có thể thỏa mãn điều kiện trên
Vậy \(\sqrt{2}\) và \(\sqrt{3}\) là số vô tỉ
cho \(\sqrt{2}\) là số vô tỉ, khi đó \(\sqrt{2}=\frac{m}{n}\)
\(\Rightarrow\)2=\(\frac{m^2}{n^2}\)
\(\Rightarrow\)2\(n^2=m^2\)
\(\Rightarrow\)\(m^2⋮n^2\Leftrightarrow m⋮n\)
\(\Rightarrow\)giả sử là vô lý
\(\Rightarrow\)\(\sqrt{2}\)là số vô tỉ
a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.
b) Vế trái có ≥ 1 ∀x ∈ R,
≥ 1 ∀x ∈ R
=> + ≥ 2 ∀x ∈ R.
Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.
c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.
a) Là một mệnh đề
b) Là một mệnh đề chứa biến
c) Không là mệnh đề, không là mệnh đề chứa biến
d) Là một mệnh đề
Do p là số nguyên tố nên không là số chính phương nên trong phân tích ra thừa số nguyên tố của p có ít nhất một thừa số với số mũ lẻ, viết p=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (p) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Vì p là số nguyên tố => p ko là số chính phương
Giả sử \(\sqrt{p}\) là số hữu tỉ thì \(\sqrt{p}\) vt đc dưới dạng
\(\sqrt{p}=\frac{m}{n}\) với \(m,n\in N;n\ne0;\left(m,n\right)=1\)
Vì p ko là số chính phương nên \(\frac{m}{n}\) ko là số tự nhiên
=> n > 1
+ \(\sqrt{p}=\frac{m}{n}\Rightarrow m^2=n^2p\)
\(\Rightarrow m^2⋮n^2\) ( do p là số tự nhiên )
goi a là một ước nguyên tố nào đó của n
\(\Rightarrow m^2⋮a\Rightarrow m⋮a\)
=> a là ước nguyên tố của m và n ( trái với \(\left(m,n\right)=1\) )
Do đó \(\sqrt{p}\) là số vô tỉ
Giả sử căn 3 không phải số vô tỉ suy ra:
tồn tại số m và n sao cho căn 3 = m/n (m,n là nguyên tố cùng nhau)
khi đó 3n^2 = m^2
=> m chia hết 3, đặt m=3p ( p là số nguyên)
thay m = 3p ta có
3n^2 = 9p^2
n^2 = 3p^2
=> n chia hết cho 3
=> m và n cùng chia hết cho 3
mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau
=> căn 3 là số vô tỉ