K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

\(\sqrt{\sqrt{5}-\sqrt{8-\sqrt{81-8\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{8-\left(4\sqrt{5}-1\right)}}\)\(=\sqrt{\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-2\right)}=\sqrt{2}\)

15 tháng 6 2019

\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}}\)

\(A^2=8+2\sqrt{10+2\sqrt{5}+8-2\sqrt{10+2\sqrt{5}}+}2\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(A^2=16+2\left[64-4\left(10+2\sqrt{5}\right)\right]\)

\(A^2=16+128-8\left(10+2\sqrt{5}\right)\)

\(A^2=144-80-16\sqrt{5}\)

\(A^2=64-16\sqrt{5}\)

15 tháng 6 2019

\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2.\sqrt{10+2\sqrt{5}}+2\sqrt{64-4\left(10+2\sqrt{5}\right)}\)

\(=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}+2^2}\)

\(=16+2\sqrt{\left(2\sqrt{5}-2\right)^2}=16+2\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)

\(=2+2.\sqrt{2}.\sqrt{10}+10\)

\(=\left(\sqrt{2}+\sqrt{10}\right)^2\)

=> \(A=\sqrt{2}+\sqrt{10}\)

15 tháng 6 2019

Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này!

16 tháng 8 2015

Biến đổi vế trái ta có :

 \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(\sqrt{2}\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)\)

Đặt A  = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

A^2 = \(4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

    =  8 + \(2\sqrt{16-\left(10-2\sqrt{5}\right)}\)

     = \(8+2\sqrt{16-10+2\sqrt{5}}\)

     = \(8+2\sqrt{6+2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

=> A = \(\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)

=> \(\sqrt{2}A=\sqrt{2}\left(\sqrt{5}+1\right)=\sqrt{10}+\sqrt{2}=VP\) ( ĐPCM) 

 

16 tháng 8 2015

haha        

25 tháng 8 2017

a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)

21 tháng 9 2017

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)

b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)

c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)

d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)

19 tháng 7 2020

a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)

biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))

=2(\(\sqrt{5}+5-\sqrt{5}-1\))

=2.4=8=VP
=> đpcm

b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)

=\(2\sqrt{2}-2\)

=2\(\left(\sqrt{2}-1\right)\)

=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)

vậy VT=VP =>đpcm

20 tháng 8 2017

Giúp mình với gấp lắm .