K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

`Answer:`

Gọi \(ƯC\left(2n+7;5n+17\right)=d\left(d\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}2n+7⋮d\\5n+17⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5\left(2n+7\right)⋮d\\2\left(5n+17\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}10n+35⋮d\\10n+34⋮d\end{cases}}\)

Lập hiệu: \(\left(10n+35\right)-\left(10n+34\right)\)

\(=10n+35-10n-34\)

\(=\left(10n-10n\right)+\left(35-34\right)\)

\(=1\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

Vậy phân số `\frac{2n+7}{5n+17}` tối giản với mọi `n\inNN`

28 tháng 2 2017

a) Gọi \(d\)là ước chung của \(n+3;n+4\)

\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)

\(\Rightarrow n+3-\left(n+4\right)⋮d\)

\(\Rightarrow n+3-n-4⋮d\)

\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)

Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

18 tháng 3 2021

Gọi d là ước chung của 2n+3 và n+2

\(2n+3⋮d\)

\(n+2⋮d\Rightarrow2n+4⋮d\)

\(\Rightarrow2n+4-2n-3=1⋮d\Rightarrow d=1\)

\(\Rightarrow\frac{2n+3}{n+2}\) là phân số tối giản

18 tháng 3 2021

nếu k có điều kiện của n thì d còn có thể = -1

16 tháng 2 2019

Gọi \(d=UCLN\left(n+1,2n+3\right)\)              \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d

                1              \(⋮\)d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

16 tháng 2 2019

Gọi d là ƯCLN\((n+1,2n+3)\)

Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\((2n+3)-(2n+2)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.