Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR n\(\in \)N, n>3
\(\frac{1}{1^3}+\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3} <2 \)
@Akai Haruma
Với \(n\ge3\) thì ta có:
\(\dfrac{1}{n^3}< \dfrac{1}{\left(n-2\right)\left(n-1\right)n}=\dfrac{1}{2}\left(\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right)\)
Áp dụng vào bài toán ta được
\(\dfrac{1}{1^3}+\dfrac{1}{2^3}+...+\dfrac{1}{n^3}\)
\(< 1+\dfrac{1}{8}+\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right)\)
\(=1+\dfrac{1}{8}+\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n-1\right)n}\right)\)
\(< 1+\dfrac{1}{8}+\dfrac{1}{4}=\dfrac{11}{8}< 2\)
Bài này ko ez như em nghĩ ban đầu -_-"
2/Dễ có:
\(2a^2.\frac{1}{b+c}\le\frac{1}{4}.2a^2\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{a^2}{2}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{a^2}{2b}+\frac{a^2}{2c}\)
Tương tự hai BĐT còn lại và cộng theo vế ta thu được:
\(VT\le\frac{1}{2}\left(\frac{a^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}\right)\)
Cần chứng minh \(\frac{1}{2}\left(\frac{a^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Hay: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
Vũ Minh Tuấn, tth, Nguyễn Văn Đạt, svtkvtm, DƯƠNG PHAN KHÁNH DƯƠNG, Lê Thảo, buithianhtho
giúp mk vs! Cảm ơn nhiều!
bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????
Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{2}}-\sqrt{y}\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)
Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)
Từ (1)(2)(3)(4) ta có:\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)
\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)
=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)
1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)
Vì n là số tự nhiên nên ta có:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\ge1\)