K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Vì n là số tự nhiên nên ta có:

\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\ge1\)

6 tháng 10 2017

Với \(n\ge3\) thì ta có:

\(\dfrac{1}{n^3}< \dfrac{1}{\left(n-2\right)\left(n-1\right)n}=\dfrac{1}{2}\left(\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right)\)

Áp dụng vào bài toán ta được

\(\dfrac{1}{1^3}+\dfrac{1}{2^3}+...+\dfrac{1}{n^3}\)

\(< 1+\dfrac{1}{8}+\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right)\)

\(=1+\dfrac{1}{8}+\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n-1\right)n}\right)\)

\(< 1+\dfrac{1}{8}+\dfrac{1}{4}=\dfrac{11}{8}< 2\)

12 tháng 8 2019

Bài này ko ez như em nghĩ ban đầu -_-"

2/Dễ có:

\(2a^2.\frac{1}{b+c}\le\frac{1}{4}.2a^2\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{a^2}{2}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{a^2}{2b}+\frac{a^2}{2c}\)

Tương tự hai BĐT còn lại và cộng theo vế ta thu được:

\(VT\le\frac{1}{2}\left(\frac{a^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}\right)\)

Cần chứng minh \(\frac{1}{2}\left(\frac{a^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{c^2}{b}\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

Hay: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

12 tháng 8 2019

Vũ Minh Tuấn, tth, Nguyễn Văn Đạt, svtkvtm, DƯƠNG PHAN KHÁNH DƯƠNG, Lê Thảo, buithianhtho

giúp mk vs! Cảm ơn nhiều!

26 tháng 9 2019

bú lồn mả bà mày trả 

26 tháng 9 2019

bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????

3 tháng 5 2020

Từ gt => \(\hept{\begin{cases}\left(\frac{1}{\sqrt{2}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{2}}-\sqrt{y}\right)\ge0\Leftrightarrow\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}+\sqrt{2}\sqrt{xy}\left(1\right)\\x\sqrt{x}\le x\cdot\frac{1}{\sqrt{2}};y\sqrt{y}\le y\cdot\frac{1}{\sqrt{2}}\Rightarrow x\sqrt{x}+y\sqrt{y}\le\frac{1}{\sqrt{2}}\left(x+y\right)\left(2\right)\end{cases}}\)

Lại có \(\hept{\begin{cases}\sqrt{xy}\le xy+\frac{1}{4}\\\sqrt{xy}\le\frac{x+y}{2}\end{cases}\Rightarrow\hept{\begin{cases}\frac{2\sqrt{2}}{3}\sqrt{xy}\le\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)\left(3\right)\\\frac{\sqrt{2}}{3}\sqrt{xy}\le\frac{\sqrt{2}}{6}\left(x+y\right)\left(4\right)\end{cases}}}\)

Từ (1)(2)(3)(4) ta có:\(x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}\le\frac{\sqrt{2}}{2}\left(x+y\right)+\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}\left(xy+\frac{1}{4}\right)+\frac{\sqrt{2}}{6}\left(x+y\right)\)

\(\le\frac{2\sqrt{2}}{3}\left(1+x+y+xy\right)\)

=> \(VT=\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}=\frac{x\sqrt{x}+y\sqrt{y}+\sqrt{x}+\sqrt{y}}{1+x+y+xy}\le\frac{2\sqrt{2}}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

22 tháng 2 2018

@Lightning Farron

25 tháng 7 2019

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)

\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)

\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)

Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)

2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)

Áp dụng công thức trên ta được n=2016

3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)

\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)

Thay x=1/3 vào A ta được;

\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

Bài 4

ÁP DỤNG BĐT CAUCHY 

là ra

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x