Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
\(a.\left(x^3-16x\right)=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)
Uầy lười lm waa
. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~
n^3 + 11n = n^3 - n + 12n
=n(n^2 -1 ) + 12n
=n(n-1)(n+1) + 12n
tc: n(n+1)(n+2) là tích 3 số tn liên tiếp chia hết cho 2 và 3 => chia hết cho 6
tc: 12 chia hết cho 6 => 12n chia hết cho 6
=> đpcm