Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có AB < AC, AB=c, AC=b. Qua trung điểm M của BC kẻ đường vuông góc với đường phân giác của góc BAC đường này cắt các đường thẳng AB, AC lần lượt tại D, E. a)C/m BD=CE. b)Tính AD và BD theo b, c. Biết thì chỉ mình vẽ hình lun nha cám ơn bạn nhìu ...
Tự vẽ hình nha bạn (hình vẽ dễ mà)
Xét tam giác vuông ACE và tam giác vuông AKE có :
góc ECA = góc EKA = 90 độ
EA: cạnh huyền chung
góc CAE = góc KAE (vì AE là tia phân giác góc A)
Suy ra : Tam giác ACE= Tam giác AKE ( CH-GN)
=> AC=AK( hai cạnh tương ứng)
ta có: AC=AK (cmt)
=> A nằm trên đường trung trực của KC (1)
AK=EC( tam giác AKE=tam giác ACE)
=> E nằm trên đường trung trực của KC (2)
từ (1) và (2) suy ra AE là đường trung trực của KC
vậy AE vuông góc với CK
b) Ta có : trong tam giác vuông BCA: góc B + góc A = 90 độ
=> góc B = 90 độ - góc A= 90 độ - 60 độ = 30 độ
Mà góc EAB = 30 độ
Suy ra Tam giác EBA cân tại E
Mặt khác : EK vuông góc với AB
Nên EK cũng là đường trung trực của tam giác AEB
=>BK=AK
c) Trong tam giác vuông BEK ta có : EB > BK
Mà BK=KA ; KA=AC
=> BK=AC
Hay EB>AC
d) Ta có : ba đường cao BD;EK;CA luôn đồng quy tại một điểm theo tính chất
nên ba đường thẳng AC;BD;KE cùng đi qua 1 điểm