K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Vì số đó chia hết cho 3 và 7

16 tháng 12 2016

A=2+2^2+2^3+......+2^29+2^30

A=(2+ 2^2 +2^3 +2^4+2^5 +2^6)+......+(2^25 +2^26 +2^27+ 2^28 +2^29 +2^30)

A=(2.1+ 2.2+ 2.2^2+ 2.2^3+ 2.2^4+ 2.2^5)+......+(2^25.1 +2^25.2 +2^25.2^2 +2^25.2^3 +2^25.2^4 +2^25.2^5)

A=2.(1+2+2^2+2^3+2^4+2^5)+......+2^25.(1+2+2^2+2^3+2^4+2^5)

A=2.(1+2+4+8+16+32)+.....+2^25.(1+2+4+8+16+32)

A=2.63+........+2^25.63

\(\Rightarrow\)A=63.(2+.....+2^25)

Vì 63:21=3 nên 63 chia hết cho 21

 \(\Rightarrow\)A=2+2^2+2^3+...+2^29+2^30 = 63.(2+......+2^25)  chia hết cho 21

 Vậy : Tổng A chia hết cho 21

             

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:
a.

$A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

b.

Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$

Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$

Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$

$=2+7(2^2+2^5+...+2^{98})$

$\Rightarrow A$ không chia hết cho 7

$\Rightarrow A$ không chia hết cho 14.

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 tháng 11 2016

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

9 tháng 10 2019

câu a nhóm 4 số lại(mũ liên tiếp)

câu b nhóm 4 số lại(mũ liên tiếp)

9 tháng 10 2019

bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.

10 tháng 8 2017

2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)

Ta có:

\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)

Từ (1) và (2) ta có:

\(x\inƯC\left(51,68\right)\)

\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)

Vì x > 9 nên x = 17

Vậy số chia là 17

10 tháng 8 2017

3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh

b,

\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)

Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N

5 tháng 1 2017

Bài 1:

Ta thấy : \(\left\{\begin{matrix}\left(x-3\right)^2\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|\ge0\)

\(\Rightarrow\left(x-3\right)^2+\left|y+1\right|-3\ge-3\)

\(\Rightarrow A\ge-3\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left(x-3\right)^2=0\\\left|y+1\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-3=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy \(Min_A=-3\) khi \(\left\{\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Bài 2:

\(S=1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\)

\(4S=4\left(1\cdot2\cdot3+2\cdot3\cdot4+...+97\cdot98\cdot99\right)\)

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+97\cdot98\cdot99\left(100-96\right)\)

\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+97\cdot98\cdot99\cdot100-96\cdot97\cdot98\cdot99\)

\(4S=97\cdot98\cdot99\cdot100\Rightarrow S=\frac{97\cdot98\cdot99\cdot100}{4}=23527350\)