K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

1. cô lập m: m>= -\(e^{\frac{\pi}{2}}\)+\(\sqrt[4]{e^{2x+1}}\)

2 bất phương trình có nghiệm vs mọi x=> m> max của vế phải

3 tìm max vế phải

NV
6 tháng 10 2021

Ta có: \(f'\left(x\right)=3x^2+2\ge2;\forall x\)

Đặt \(g\left(x\right)=f\left(f\left(x\right)\right)-x\Rightarrow g'\left(x\right)=f'\left(x\right).f'\left(f\left(x\right)\right)-1\ge2.2-1>0;\forall x\)

\(\Rightarrow g\left(x\right)\) đồng biến trên R

\(\Rightarrow\min\limits_{\left[2;6\right]}g\left(x\right)=g\left(2\right)=f\left(f\left(2\right)\right)-2\)

Ta cần tìm m để \(f\left(f\left(2\right)\right)-2\ge0\)

Đặt \(5^m=t\Rightarrow f\left(2\right)=12-t\)

\(\left(1\right)\Leftrightarrow\left(12-t\right)^3+2\left(12-t\right)-t-2\ge0\) 

\(\Leftrightarrow\left(10-t\right)\left(t^2-26t+175\right)\ge0\)

\(\Rightarrow t\le10\)

\(\Rightarrow5^m\le10\Rightarrow m\le log_510\)

15 tháng 1 2017

Chọn A.

Bất phương trình tương đương: 2x > m2 - 10m + 9

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :

m- 10m + 9 ≤ 0 hay 1 ≤ m ≤ 9

Mà 

13 tháng 8 2017




27 tháng 4 2018

25 tháng 9 2018

1 tháng 4 2017

Đáp án D.

Ta có:

P T ⇔ m 9 4 x - 2 m + 1 6 4 x + m ≤ 0

⇔ m 3 2 2 x - 2 m + 1 3 2 x + m ≤ 0

Đ ặ t   t = 3 2 x ;   d o   x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 .

Khi đó PT trở thành:

  m t 2 - 2 m + 1 t + m ≤ 0 ⇔ m t 2 - 2 t + 1 ≤ t

Rõ ràng t =1 là nghiệm của BPT đã cho.

D o   đ ó   B P T   n g h i ệ m   đ ú n g   v ớ i   ∀ t ∈ 1 ; 3 2

⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6 .

Vậy có 6 giá trị nguyên dương của m thỏa mãn.

 

11 tháng 4 2016

Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)

                                                   \(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)

Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có

\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)

Lập bảng biến thiên ta được 

\(f\left(0\right)=1;f\left(2\right)=-1\)

\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)

Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)

NV
25 tháng 6 2021

ĐKXĐ: \(-x^2+4x+m>0\)

\(log_2\left(-x^2+4x+m\right)-log_2\left(x^2+2\right)< log_23\)

\(\Leftrightarrow log_2\left(\dfrac{-x^2+4x+m}{x^2+2}\right)< log_23\)

\(\Leftrightarrow\dfrac{-x^2+4x+m}{x^2+2}< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+4x+m>0\\-x^2+4x+m< 3x^2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>x^2-4x\\m< 4x^2-4x+6\end{matrix}\right.\) ; \(\forall x\in\left[1;5\right]\)

Xét hai hàm \(\left\{{}\begin{matrix}f\left(x\right)=x^2-4x\\g\left(x\right)=4x^2-4x+6\end{matrix}\right.\) trên \(\left[1;5\right]\) ta được: \(\left\{{}\begin{matrix}f\left(x\right)_{max}=f\left(5\right)=5\\g\left(x\right)_{min}=g\left(1\right)=6\end{matrix}\right.\)

\(\Rightarrow5\le m\le6\)

Có 2 giá trị nguyên của m