K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

a) |x + 1| \(\ge0\)

    |x + 3| \(\ge0\)

    |x + 5| \(\ge0\)

=> |x + 1| + |x + 3| + |x + 5| \(\ge0\)

=> 7x \(\ge0\)

Mà 7 \(>0\)

=> x \(\ge0\)

=> x + 1 + x + 3 + x + 5 = 7x 

=> 3x + 9 = 7x

=> 4x = 9

=> x = \(\frac{9}{4}\)

9 tháng 4 2017

a) Vì \(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\forall x\in R\Rightarrow7x\ge0\forall x\in R\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=x+1+x+3+x+5=3x+9\)

\(\Rightarrow3x+9=7x\)

\(\Rightarrow7x-3x=9\)

\(\Rightarrow4x=9\)

\(\Rightarrow x=\frac{9}{4}\)

30 tháng 10 2019

a,Ta có A=|x-1|+|x+2019|=|1-x|+|x+2019|>=|1-x+x+2019|=2020

=>A>2020

Dấu''='' xảy ra <=>(1-x)(x+2019)>0

                       <=>(x-1)(x+2019)<0

                       <=>-2019<x<1

Vậy MIN(A)=2020<=>-2019<x<1

có gì sai bạn bỏ qua nhé>3

30 tháng 10 2019

b) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{x.z}{z.y}\)
                     \(\Rightarrow\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x}{y}\)
                     \(\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{x}{y}\)
 

8 tháng 8 2017

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

8 tháng 8 2017

thank bn

22 tháng 4 2018

Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)

Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)

Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)

Vậy với mọi a thì \(\left|a\right|+a⋮2\)

Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)

\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)

Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)

Vậy không có x,y,z thỏa mãn

a: TH1: x<-2

Pt sẽ là -3x-6+x+1=x+5

=>-2x-5=x+5

=>-3x=10

=>x=-10/3(nhận)

TH2: -2<=x<-1

Pt sẽ là 3x+6+x+1=x+5

=>3x+7=5

=>3x=-2

=>x=-2/3(loại)

TH3: x>=-1

Pt sẽ là 3x+6-x-1=x+5

=>2x+5=x+5

=>x=0(nhận)

b: TH1: x<-2

Pt sẽ là 2-x-x-2=4-y^2

=>-2x=4-y^2

=>2x=y^2-4

=>2x-y^2=-4

TH2: -2<=x<2

Pt sẽ là x+2+2-x=4-y^2

=>4=4-y^2

=>y=0

TH3: x>=2

Pt sẽ là x+2+x-2=4-y^2

=>2x=-y^2

26 tháng 12 2015

Ta có:

\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1

                                          y=3k+2

                                          z=4k+3

                     Thay vào: x  -  2y  + 3z  =  -10

                              (2k+1)-2x(3k+2)+3x(4k+3)= -10

                              (2k+1)-(6k+4)+(12k+9)= -10

                               (2k-6k+12k)+(1-4+9) = -10

                                      8k    +  6             = -10  

                                              8k               = -16

                                                k               = -2

                                   =>    x = 2x(-2)+1 = -3

                                           y = 3x(-2)+2 = -4

                                           z =4x(-2)+3 =  -5

                                                Vậy .............

                          Nếu đúng nhớ **** cho mk nha!

 

 

 

 

26 tháng 12 2015

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)

Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)

=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)

=> x + y + z - 6 = -10.9 : 3 = -30

=> x + y + z = -24

21 tháng 8 2016

Ta có

\(\begin{cases}\left|x+1\right|\ge0\\\left|y+2\right|\ge0\\\left|x-y+z\right|\ge0\\\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+1=0\\y+2=0\\x-y+2=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\x-y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\\left(-1\right)-\left(-2\right)+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\1+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\z=-1\end{cases}\)

 

21 tháng 8 2016

Ta có : \(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)

Để tìm được vế 3 ta xết 2 vế đầu tiên :

  \(\left|x+2\right|+\left|y+2\right|=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\y+2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\y=-2\end{array}\right.\)

Từ đó ta có \(x=-1;y=-2\)

Ta có : \(\left|-1+2+z\right|=0\Rightarrow z=-1\)

Vậy \(\left[\begin{array}{nghiempt}x=-1\\y=-2\\z=-1\end{array}\right.\)

Không biết đúng không nữa

 

a: TH1: x<-1

Pt sẽ là 3(2-x)-(-x-1)=x+5

=>6-3x+x+1=x+5

=>-3x+7=5

=>-3x=-2

=>x=2/3(loại)

TH2: -1<=x<2

Pt sẽ là 3(2-x)-x-1=x+5

=>6-3x-x-1=x+5

=>-4x+5=x+5

=>x=0(nhận)

TH3: x>=2

Pt sẽ là 3x-6-x-1=x+5

=>2x-7=x+5

=>x=12(nhận)

b: TH1: x<-2

Pt sẽ là 2-x-x-2=4-y^2

=>-2x=4-y^2

=>2x=y^2-4

=>2x-y^2=-4

TH2: -2<=x<2

Pt sẽ là 2-x+x+2=4-y^2

=>-y^2=0

=>y=0

TH3: x>=2

Pt sẽ là x-2+x+2=4-y^2

=>2x+y^2=4