Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có A=|x-1|+|x+2019|=|1-x|+|x+2019|>=|1-x+x+2019|=2020
=>A>2020
Dấu''='' xảy ra <=>(1-x)(x+2019)>0
<=>(x-1)(x+2019)<0
<=>-2019<x<1
Vậy MIN(A)=2020<=>-2019<x<1
có gì sai bạn bỏ qua nhé>3
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)
Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)
Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)
Vậy với mọi a thì \(\left|a\right|+a⋮2\)
Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)
\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)
Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)
Vậy không có x,y,z thỏa mãn
a: TH1: x<-2
Pt sẽ là -3x-6+x+1=x+5
=>-2x-5=x+5
=>-3x=10
=>x=-10/3(nhận)
TH2: -2<=x<-1
Pt sẽ là 3x+6+x+1=x+5
=>3x+7=5
=>3x=-2
=>x=-2/3(loại)
TH3: x>=-1
Pt sẽ là 3x+6-x-1=x+5
=>2x+5=x+5
=>x=0(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là x+2+2-x=4-y^2
=>4=4-y^2
=>y=0
TH3: x>=2
Pt sẽ là x+2+x-2=4-y^2
=>2x=-y^2
Ta có:
\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1
y=3k+2
z=4k+3
Thay vào: x - 2y + 3z = -10
(2k+1)-2x(3k+2)+3x(4k+3)= -10
(2k+1)-(6k+4)+(12k+9)= -10
(2k-6k+12k)+(1-4+9) = -10
8k + 6 = -10
8k = -16
k = -2
=> x = 2x(-2)+1 = -3
y = 3x(-2)+2 = -4
z =4x(-2)+3 = -5
Vậy .............
Nếu đúng nhớ **** cho mk nha!
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)
Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)
=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)
=> x + y + z - 6 = -10.9 : 3 = -30
=> x + y + z = -24
Ta có
\(\begin{cases}\left|x+1\right|\ge0\\\left|y+2\right|\ge0\\\left|x-y+z\right|\ge0\\\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+1=0\\y+2=0\\x-y+2=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\x-y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\\left(-1\right)-\left(-2\right)+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\1+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\z=-1\end{cases}\)
Ta có : \(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)
Để tìm được vế 3 ta xết 2 vế đầu tiên :
\(\left|x+2\right|+\left|y+2\right|=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\y+2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\y=-2\end{array}\right.\)
Từ đó ta có \(x=-1;y=-2\)
Ta có : \(\left|-1+2+z\right|=0\Rightarrow z=-1\)
Vậy \(\left[\begin{array}{nghiempt}x=-1\\y=-2\\z=-1\end{array}\right.\)
Không biết đúng không nữa
a: TH1: x<-1
Pt sẽ là 3(2-x)-(-x-1)=x+5
=>6-3x+x+1=x+5
=>-3x+7=5
=>-3x=-2
=>x=2/3(loại)
TH2: -1<=x<2
Pt sẽ là 3(2-x)-x-1=x+5
=>6-3x-x-1=x+5
=>-4x+5=x+5
=>x=0(nhận)
TH3: x>=2
Pt sẽ là 3x-6-x-1=x+5
=>2x-7=x+5
=>x=12(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là 2-x+x+2=4-y^2
=>-y^2=0
=>y=0
TH3: x>=2
Pt sẽ là x-2+x+2=4-y^2
=>2x+y^2=4
a) |x + 1| \(\ge0\)
|x + 3| \(\ge0\)
|x + 5| \(\ge0\)
=> |x + 1| + |x + 3| + |x + 5| \(\ge0\)
=> 7x \(\ge0\)
Mà 7 \(>0\)
=> x \(\ge0\)
=> x + 1 + x + 3 + x + 5 = 7x
=> 3x + 9 = 7x
=> 4x = 9
=> x = \(\frac{9}{4}\)
a) Vì \(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\forall x\in R\Rightarrow7x\ge0\forall x\in R\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=x+1+x+3+x+5=3x+9\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{9}{4}\)