Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 dễ r làm bài 2 :
A B C D F E
Ta có : AD là tia phân giác của góc BAC
=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\) (1)
Ta có : BE là tia phân giác của góc ABC
\(\Rightarrow\dfrac{EC}{EA}=\dfrac{BC}{BA}\) (2)
Ta có : CF là tia phân giác của góc BCA
\(\Rightarrow\dfrac{FA}{FB}=\dfrac{AC}{BC}\) (3)
Nhận 2 vế của (1)(2)(3) ta được :
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB.AC.BC}{AB.BC.CA}=1\)
a: Xét ΔACH vuông tại H và ΔCDH vuông tại H có
góc CAH=gócĐCH
Do đó: ΔACH đồng dạng với ΔCDH
SUy ra: AC/CD=HC/HD
c: Xét ΔHAC có
E là trung điểm của HA
F là trung điểm của HC
Do đó: EF là đường trung bình
=>EF//AC
hay EF vuông góc với CD
Xét ΔCED có
CH là đường cao
EF là đường cao
CH cắt EF tại F
DO đó: F là trực tâm
=>CE vuông góc với FD
1) Xét tg CAB và tg CDE ta có:
CAB = CDE (= 90 độ)
C chung
\(\Rightarrow\) tg CAB\(\approx\) tg CDE (g.g)
\(\Rightarrow\) \(\dfrac{CA}{CD}\)= \(\dfrac{CB}{CE}\) \(\Rightarrow\) CA.CE=CB.CD
b) Xét 2 t/g vuông AEB và ABC có:
góc ABE = góc C ( góc ABC= 2C )
\(\Rightarrow\)tam giác ABE đồng dạng vs tam giác ABC ( 1.g.n)
\(\Rightarrow\) \(\dfrac{AB}{AC}=\dfrac{AE}{AB}\)
\(\Rightarrow AB.AB=AC.AE\)
hay \(AB^2=AE.AC\)
a) Xét 2 tam giác vuông ADB và CAB có:
góc B chung
\(\Rightarrow\)tam giác ADB đồng dạng vs tam giác CAB ( 1 g.n )
a) AB//CD => góc BAC = góc DCA ( so le trong)
Xét tam giác ABO và tam giác CDO có:
góc BAC = góc DCA (cmt)
góc AOB = góc COD (đối đỉnh)
=> tam giác ABO ~ tam giác CDO (TH3)
=> \(\dfrac{OA}{OB}\) = \(\dfrac{OC}{OD}\)
=> OA. OD = Oc. OB (đpcm)
b) Xét tam giác HOA và tam giác KOC có:
góc HOA = góc KOC (đối đỉnh)
góc BAC = góc DCA (cmt)
=> tam giác HOA ~ tam giác KOC (TH3)
c) Ta có:
+) AB//CD => \(\dfrac{AB}{CD}\) = \(\dfrac{OA}{OC}\)(hệ quả định lí Talet)(1)
+) AB//CD ; H \(\in\) AB; K \(\in\) DC => AH//KC
=> \(\dfrac{OH}{OK}\) = \(\dfrac{OA}{OC}\)( hệ quả định lí Talet)(2)
Từ (1) và (2) => \(\dfrac{AB}{CD}\) =\(\dfrac{OH}{OK}\) (đpcm)
Bài làm
A B C x y O O 2 H
1/ Xét \(\diamond ACDO\), có :
\(\widehat{BAC}=\widehat{ACD}=\widehat{CDO}=90^0\)
\(\Rightarrow\diamond ACDO\) là hình chữ nhật
mà \(AC=CD\)
\(\Rightarrow\diamond ACDO\) là hình vuông.
2/ Ta có :
\(\bigtriangleup ABC\) vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^0\)
\(\bigtriangleup ABH\) vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{ABC}=90^0\)
Do đó \(\widehat{BAH}=\widehat{ACB}\)
Xét \(\bigtriangleup ABC\) và \(\bigtriangleup AOO_2\), có :
\(\widehat{BAC}=\widehat{O_2OA}=90^0\) (\(\diamond ACDO\) là hình vuông)
\(AC=AO\) (\(\diamond ACDO\) là hình vuông)
\(\widehat{OAO_2}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\))
\(\Rightarrow\bigtriangleup ABC=\bigtriangleup AOO_2\text{ }\left(g.c.g\right)\).
a) A B C D O M N
Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)
=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)
=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)
Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)
=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)
Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)
=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)
Từ (1), (2),(3):
=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)
=> MO=NO(dpcm)
CHÚC BẠN HỌC TỐT!
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE