Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)
\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)
=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)
Xin phép tách ra để bài giải trở nên đẹp hơn :))
Do X1 ; X2 là 2 nghiệm của phương trình \(5x^2-3x-1\) nên theo định lý Viete ta có:
\(X_1X_2=-\frac{1}{5};X_1+X_2=\frac{3}{5}\) ( 1 )
Khi đó ta có:
\(A=\frac{X_1}{X_2}+\frac{X_1}{X_2+1}+\frac{X_2}{X_1}+\frac{X_2}{X_1+1}-\left(\frac{1}{X_1}+\frac{1}{X_2}\right)\) ( theo mình ở đây là +,không biết có đúng ko :V )
\(=\frac{X_1^2+X_2^2}{X_1X_2}+\frac{X_1^2+X_1+X_2^2+X_2}{X_1X_2+X_1+X_2+1}-\frac{X_2+X_1}{X_1X_2}\)
\(=\frac{\left(X_1+X_2\right)^2-2X_1X_2-\left(X_1+X_2\right)}{X_1X_2}+\frac{\left(X_1+X_2\right)^2-2X_1X_2+\left(X_1+X_2\right)}{\left(X_1+X_2\right)+X_1X_2+1}\)
Bạn thay ( 1 ) vào là ra nhé :)
ax2+bx+c=a(x2+\(\dfrac{b}{a}\)x+\(\dfrac{c}{a}\))
=a(x2-(x1+x2)x+x1x2)
=a(x-x1)(x-x2)
Áp dụng:
Câu a: Ptr có 2 nghiệm là 5,6=>x2-11x+30=(x-5)(x-6)
Câu b: Ptr có 2 nghiệm là \(\dfrac{-2}{3}\),-4=>3x2+14x+8=3(x+\(\dfrac{2}{3}\))(x+4)
Câu c: Ptr có 2 nghiệm là \(\dfrac{2}{5}\),-2=>5x2+8x-4=5(x-\(\dfrac{2}{5}\))(x+2)
Câu d: Ptr có 2 nghiệm là 3+\(\sqrt{3}\),-2+\(\sqrt{3}\)=>
x2-(1+2\(\sqrt{3}\))x-3+\(\sqrt{3}\)=(x-3-\(\sqrt{3}\))(x+2-\(\sqrt{3}\))