Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)
\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)
\(=2\)
=2 nha ban
(con cach lam ban nhan dang thuc len rui rut gon lai)
\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)
\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)
\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)
\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)
\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)
\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)
\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)
\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)
\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)
\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)
\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)
a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)
\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)
\(=\left(x+1\right)\cdot\left(-1\right)\)
\(=-1\left(x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)
\(=x^3-1-x^3-8+12x-12\)
\(=-21+12x\)
c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)
\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)
\(=0\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2\)
\(=x^4+2x^2+1-x^2\)
\(=x^4+x^2+1\)
\(6x-9-x^2\)
\(=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
\(=-1.\left(x-3\right)^2\)
b ) \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=2x.2\left(2x+1\right)\)
\(=4x\left(2x+1\right)\)
Sao chẳng ai T z
Ta có:\(TH1:\left(3x+1\right)^2-\left(1-2x\right)^2=\left(3x+1+1-2x\right)\left(3x+1-1+2x\right)=\left(x+2\right)\left(5x\right)\)
Còn ra hằng đẳng thức thì mk chịu
a) \(\left(1+x\right)^2+\left(1-x\right)^2\)
\(=1+2x+x^2+1-2x+x^2\)
\(=2x^2+2\)
b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)
\(=x^2+4x+4+1-x^2\)
\(=4x+5\)
c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)
\(=x^2-6x+9+3x^2+6x+3\)
\(=4x^2+12\)
d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-4-9x^2-6x-1\)
\(=-6x-5\)
e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=x^2-2x+5x-10-x^2-4x-4\)
\(=-x-14\)
f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)
\(=2x^2-5x+6x-15-2-4x-2x^2\)
\(=-3x-17\)
g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)
\(=16x^2-1-4+16x-16x^2\)
\(=16x-5\)
#Học tốt!
\(\left(3x^2-x-1\right)\left(3x^2+x-1\right)\)
\(=\left(3x^2-1\right)^2-x^2\)
\(=9x^4-6x^2+1-x^2\)
\(=9x^4-7x^2+1\)