K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

1. \(\frac{a}{b}\)cùng dấu thì lớn hơn 0

    \(\frac{a}{b}\)khác dấu thì bé hơn 0

2. mik không hiểu đề lắm

13 tháng 6 2016

1:a/b cùng đấu thì lớn hơn o

a/b khác dấu thì bé hơn o

2: có x =a/m=a+a/2m, y =b/m=b+b/2m

Vì x<y =>a<b=>a+a<a+b=>a+a/2m<a+b/2m=>x<z(1)

Vì a<b =>a+b<b+b=>a+b/2m<b+b/2m=>z<y

Từ đó =>x<z<y

10 tháng 9 2019

Ta có: \(\frac{a}{m}< \frac{b}{m}\)

Mà m>0 => a<b

Do đó: \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

hay \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

1 tháng 1 2020

Ta có: \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)\(\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)\(\Rightarrow zx+zy=xy+xz=yz+xy\)

Ta có: zx + zy = xy + xz => zy = xy => z = x    (1)

Ta có: x - z = x - x = 0

4 tháng 11 2018

Ai trả lời nhanh mk k cho

24 tháng 4 2020

Fat you

28 tháng 8 2015

Áp dụng tính chất dãy tỉ số bằng nhau ta có:


\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a+b+c+a+b+c\right)-\left(a+b+c\right)}{a+b-c}=\frac{a+b+c}{a+b+c}=1\)

\(=>\frac{a+b-c}{c}=1=>a+b-c=c=>a+b=c+c=2c\)

\(=>\frac{a-b+c}{b}=1=>a-b+c=b=>a+c=b+b=2b\)

\(=>\frac{-a+b+c}{a}=1=>-a+b+c=a=>b+c=a+a=2a\)

\(=>M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)

Vậy M=8

28 tháng 8 2015

Minh Triều @@ trời ạ 

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)