K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Xét :

x^4 - 3x^3 + ax + b

= (x^4-3x^3+x^2)-(x^2-3x+1) +ax+b - 3x + 1

= (x^2-3x+1).(x^2-1) + (a-3).x + (b+1)

=> để x^4-3x^3+ax+b chia hết cho x^2-3x+1 thì :

a-3=0 và b+1=0

<=> a=3 và b=-1

Vậy ...........

Tk mk nha

2 tháng 9 2016

Áp dụng định lý Bê-du, ta có :

Khi \(P\left(x\right)\)chia hết cho \(x-2\Rightarrow P\left(2\right)=0\)

\(\Rightarrow6.2^5+a.2^4+b.2^3+2^2+c.2+450=0\)

\(\Rightarrow192+16a+8b+4+2c+450=0\)

\(\Rightarrow16a+8b+2c=-646\)

\(\Rightarrow8a+4b+c=-323\)

Khi \(P\left(x\right)\)chia hết cho \(x-3\Rightarrow P\left(3\right)=0\)

\(\Rightarrow P\left(3\right)=6.3^5+a.3^4+b.3^3+3^2+3c+450=0\)

\(\Rightarrow1458+81a+27b+9+3c+450=0\)

\(\Rightarrow81a+27b+3c=-1917\)

\(\Rightarrow27a+9b+c=-639\)

Khi \(P\left(x\right)\)chia hết cho \(x-5\Rightarrow P\left(5\right)=0\)

Làm tương tự, có :

\(125a+25b+c=-3845\)

Bạn tự xét phần tiếp theo vì ở đây đã có 3 dữ kiện để tìm a, b , c rồi.

NV
5 tháng 2 2020

\(P\left(x\right)=\left(x^2+2\right)\left(x^2-2x+5\right)+\left(a+4\right)x+b-12\)

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+4=0\\b-12=0\end{matrix}\right.\)

6 tháng 2 2020

P(x)=(x2+2)(x^2−2x+5)+(a+4)x+b−12(a+4)

Để P(x)⋮Q(x)

⇔a+4=0 hoặc b-12=0

14 tháng 8 2017

 dùng  đồng nhất thức

3 tháng 11 2019

Đa thức x- 3x + 2 có nghiệm \(\Leftrightarrow\)x- 3x + 2 = 0

\(\Leftrightarrow x^2-2x-x+2=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

1 và 2 là hai nghiệm của đa thức x- 3x + 2

Để f(x) = x+ ax+ bx - 1  chia hết cho x- 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x+ ax+ bx - 1

Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1

Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)

Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)

\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)

Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)

11 tháng 10 2020

a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là

\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)

A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)

\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)

\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)

b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)

Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\)  (vì \(x\in Z;x\ge0\))

Khi đó A=4