Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
\(3,=\left(\dfrac{13}{25}-\dfrac{38}{25}\right)+\left(\dfrac{14}{9}-\dfrac{5}{9}\right)=-1+1=0\\ 4,=\left(\dfrac{4}{9}\right)^5\cdot\left(\dfrac{9}{49}\right)^5=\left(\dfrac{4}{9}\cdot\dfrac{9}{49}\right)^5=\left(\dfrac{4}{49}\right)^5\\ 5,\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{x+y}{5+3}=\dfrac{2}{2}=\dfrac{x+y}{8}\Rightarrow x+y=8\\ 6,\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\Rightarrow2\text{ giá trị}\\ 7,=\dfrac{3^{10}\cdot2^{30}}{2^9\cdot3^9\cdot2^{20}}=2\cdot3=6\)
2) $\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}$
$=>\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1$
$=>\dfrac{x+4}{2000}+\dfrac{2000}{2000}+\dfrac{x+3}{2001}+\dfrac{2001}{2001}=\dfrac{x+2}{2002}+\dfrac{2002}{2002}+\dfrac{x+1}{2003}+\dfrac{2003}{2003}$
$=>\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}$
$=>\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0$
$=>(x+2004)(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}=0$
$=>x+2004=0$
$=>x=-2004$
3) Ta có : $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}$
$=>A=\dfrac{1}{2}+\dfrac{1}{12}+...+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}$
$=>A>\dfrac{7}{12}(1)$
Ta lại có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}<(1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$
$=>A<\dfrac{5}{6}(2)$
Từ (1)(2) => đpcm.
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
a: \(\Leftrightarrow\dfrac{7}{2}x-\dfrac{3}{4}=\dfrac{1}{2}x+\dfrac{5}{2}\)
\(\Leftrightarrow3x=\dfrac{5}{2}+\dfrac{3}{4}=\dfrac{10}{4}+\dfrac{3}{4}=\dfrac{13}{4}\)
=>x=13/12
b: \(\Leftrightarrow x\cdot\left(\dfrac{2}{3}-\dfrac{1}{2}\right)=-\dfrac{1}{3}+\dfrac{2}{5}\)
\(\Leftrightarrow x\cdot\dfrac{1}{6}=\dfrac{-5+6}{15}=\dfrac{1}{15}\)
\(\Leftrightarrow x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)
c: \(\Leftrightarrow x\cdot\dfrac{1}{3}+x\cdot\dfrac{2}{5}+\dfrac{2}{5}=0\)
\(\Leftrightarrow x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\)
\(\Leftrightarrow x=-\dfrac{2}{5}:\dfrac{11}{15}=\dfrac{-2}{5}\cdot\dfrac{15}{11}=\dfrac{-30}{55}=\dfrac{-6}{11}\)
d: \(\Leftrightarrow-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}-x-\dfrac{1}{2}=5\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{2}{3}=5\)
\(\Leftrightarrow-\dfrac{4}{3}x=5-\dfrac{2}{3}=\dfrac{13}{3}\)
\(\Leftrightarrow x=\dfrac{13}{3}:\dfrac{-4}{3}=\dfrac{-13}{4}\)
e: \(\Leftrightarrow\left(\dfrac{x+2015}{5}+1\right)+\left(\dfrac{x+2016}{4}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2018}{2}+1\right)\)
=>x+2020=0
hay x=-2020
a)
\(\left|x-2\right|-\dfrac{3}{5}=\dfrac{1}{2}\\ \left|x-2\right|=\dfrac{1}{2}+\dfrac{3}{5}\\ \left|x-2\right|=\dfrac{11}{10}\\ =>\left[{}\begin{matrix}x-2=\dfrac{11}{10}\\x-2=-\dfrac{11}{10}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{31}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{7}{3}\right):\dfrac{-1}{3}=0,4\\ x-\dfrac{7}{3}=0,4\cdot\dfrac{-1}{3}\\ x-\dfrac{7}{3}=-\dfrac{2}{15}\\ x=-\dfrac{2}{15}+\dfrac{7}{3}\\ x=\dfrac{11}{5}\)
c)
\(\left|x-3\right|=5\\ =>\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\left[{}\begin{matrix}x=5+3\\x=-5+3\end{matrix}\right.\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
d)
\(\left(2x+3\right)^2=25\\ =>\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
e)
\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=-\dfrac{7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\\ x=-\dfrac{5}{7}\)
f)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\\ =>x-\dfrac{1}{2}=\dfrac{1}{3}\\ x=\dfrac{1}{3}+\dfrac{1}{2}\\ x=\dfrac{5}{6}\)
\(\dfrac{5}{6}x-\dfrac{3}{4}=\dfrac{-1}{4}+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{5}{6}x=\dfrac{7}{6}\)
\(\Rightarrow x=\dfrac{7}{5}\)
b) \(-1\dfrac{1}{2}-\dfrac{2}{3}x=\dfrac{5}{6}-\left(\dfrac{-2}{5}\right)\)
\(\Leftrightarrow\dfrac{2}{3}x=-\dfrac{41}{15}\)
\(\Rightarrow x=-\dfrac{41}{10}\)
c) \(\left(\dfrac{4}{5}:x+1,5\right):\dfrac{2}{3}=-1,5\)
\(\Leftrightarrow\dfrac{8+15x}{10x}.\dfrac{3}{2}=\dfrac{-3}{2}\)
\(\Leftrightarrow\dfrac{24+45x}{20x}=\dfrac{-3}{2}\)
\(\Leftrightarrow-60x=48+90x\)
\(\Rightarrow x=-0,32\)
d) \(\dfrac{4}{3}x-\dfrac{2}{3}=\dfrac{1}{4}-x\)
\(\Leftrightarrow\dfrac{4x-2}{3}=\dfrac{1-4x}{4}\)
\(\Rightarrow16x-8=3-12x\)
\(\Rightarrow x=\dfrac{11}{28}\)
\(\dfrac{-3}{5}-x=\dfrac{21}{10}\)
\(x=\dfrac{-3}{5}-\dfrac{21}{10}\)
\(x=\)-\(\dfrac{27}{10}\)
\(x:\dfrac{2}{9}=\dfrac{9}{2}\)
\(x.\dfrac{9}{2}=\dfrac{9}{2}\)
\(x=\dfrac{9}{2}:\dfrac{9}{2}\)
\(x=1\)
\(\dfrac{x}{9}=\dfrac{5}{3}\)
\(x.3=5.9\)
\(x.3=45\)
\(x=45:3=15\)
\(x:\left(\dfrac{2}{5}\right)^3=\left(\dfrac{5}{2}\right)^3\)
\(x:\dfrac{8}{125}=\dfrac{125}{8}\)
\(x.\dfrac{125}{8}=\dfrac{125}{8}\)
\(x=\dfrac{125}{8}:\dfrac{125}{8}=1\)
\(\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}=\dfrac{x}{3^2}+\dfrac{x}{3^3}+\dfrac{x}{3^4}\)
\(\Leftrightarrow\dfrac{x}{2^2}+\dfrac{x}{2^3}+\dfrac{x}{2^4}-\dfrac{x}{3^2}-\dfrac{x}{3^3}-\dfrac{x}{3^4}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-\dfrac{1}{3^4}\right)=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0
\(x=0\)