Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(a+b+c+abc-ab-bc-ac-1>0\)
\(\Leftrightarrow (a+b-ab-1)+c(ab-a-b+1)>0\)
\(\Leftrightarrow (a+b-ab-1)-c(a+b-ab-1)>0\)
\(\Leftrightarrow (a+b-ab-1)(1-c)>0\)
\(\Leftrightarrow [a(1-b)-(1-b)](1-c)>0\)
\(\Leftrightarrow (a-1)(1-b)(1-c)>0\Leftrightarrow (a-1)(b-1)(c-1)>0\)
Người ta biến đổi tắt thôi bạn.
Lời giải:
Trước tiên ta tìm giá trị của $m$ để $x^2-2mx+m+20\geq 0$ với mọi $x$. Loại bỏ đi những giá trị $m$ tìm được thì những giá trị còn lại chính là những giá trị để $x^2-2mx+m+20< 0$ có nghiệm.
Theo định lý về dấu của tam thức bậc 2, $x^2-2mx+m+20\geq 0, \forall x\in\mathbb{R}$ khi :
$\Delta'=m^2-m-20\leq 0$
$\Leftrightarrow (m+4)(m-5)\leq 0\Leftrightarrow -4\leq m\leq 5$
Vậy những giá trị $m\in (-\infty;-4)\cup (5;+\infty)$ là những giá trị đề cần tìm.
Nhân hai vế của BPT: –4x + 1 > 0 với (–1) < 0 ta được BPT: 4x – 1 < 0 nên hai BPT đó tương đương.
Viết là –4x + 1 > 0 ⇔ 4x – 1 < 0.
Lời giải:
$x^3-4x<0$
$\Leftrightarrow x(x^2-4)<0$
Xét 2 TH:
TH1: \(\left\{\begin{matrix} x<0\\ x^2-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x<0\\ (x-2)(x+2)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x<0\\ \text{x>2 hoặc x< -2}\end{matrix}\right.\)
\(\Leftrightarrow x< -2\)
TH2: \(\left\{\begin{matrix} x>0\\ x^2-4<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ (x-2)(x+2)<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ -2< x< 2\end{matrix}\right.\)
\(\Rightarrow 0< x< 2\)
Vậy tập nghiệm của BPT là $(0;2)\cup (-\infty; -2)$
\(x^3-4x< 0\Leftrightarrow x\left(x^2-4\right)< 0\)
Có 2 trường hợp xảy ra.
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-4< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2< 4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-2< x< 2\end{matrix}\right.\Leftrightarrow0< x< 2\)
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x^2>4\end{matrix}\right.\) (*)
Ta có \(x^2>4\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\), vậy (*) \(\Leftrightarrow x< -2\)
Vậy tập nghiệm của BPT đã cho là \(x\) sao cho \(0< x< 2\) hoặc \(x< -2\)