K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Tru (1) cho (2) , ta dc:

x2-y2=4y-4x

⇔(x-y)(x+y)=-4(x-y)

⇔(x-y)(x+y+4)=0

⇔[x=y ; x=-4-y

+) Vs x=y the vao (1)

y2-3y2=4y

⇔[y=0 => x=0 ; y=-2 => x=-2

+) Vs x=-4-y the (2)

y2-3(-4-y)y=4(-4-y)

⇔y=-2 =>x=-2

NV
12 tháng 6 2019

Cộng vế với vế:

\(4x^2-4xy+y^2=0\Leftrightarrow\left(2x-y\right)^2=0\Leftrightarrow2x=y\)

Thay vào pt đầu:

\(4x^2-x.2x=2\) \(\Leftrightarrow2x^2=2\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=-2\end{matrix}\right.\)

6 tháng 9 2021

Ta có:\(\left\{{}\begin{matrix}4x^2-xy=2\\y^2-3xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2=0\\4x^2-xy=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y\\4x^2-x.2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\)

6 tháng 9 2021

sao 4x2 - xy lại bằng (2x - y)2 đc nhỉ

30 tháng 7 2018

\(\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\)

Xét \(pt\left(1\right)\Leftrightarrow2x^2+y^2-3xy-4x+3y+2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(2x-y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=2x-2\end{matrix}\right.\)

*)\(y=x-1\) thay vao \(pt(2)\) :

\(pt\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=0\end{matrix}\right.\)

*)\(y=2x-2\) thay vao \(pt(2)\):

\(pt\Leftrightarrow\sqrt{x^2-2x+5}+\sqrt{x-1}=2\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{\sqrt{x^2-2x+5}+2}+\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x-1}{\sqrt{x^2-2x+5}+2}+\dfrac{1}{\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

30 tháng 7 2018

sai r bạn ơi!

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

Xét PT(1)

\(2x^2+y^2-3xy+3x-2y+1=0\)

\(\Leftrightarrow 2x^2-3x(y-1)+(y-1)^2=0\)

Đặt \(y-1=t\Rightarrow 2x^2-3xt+t^2=0\)

\(\Leftrightarrow (x-t)(2x-t)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-t=0\\2x-t=0\end{matrix}\right.\)

TH1: \(x-t=0\Leftrightarrow x=t=y-1\)

Thay vào PT(2)

\(\Rightarrow 4(y-1)^2-y^2+(y-1)+4=\sqrt{3y-2}+\sqrt{5y-1}\)

\(3y^2-7y+7=\sqrt{3y-2}+\sqrt{5y-1}\)

\(\Leftrightarrow 3(y^2-3y+2)=\sqrt{3y-2}-y+\sqrt{5y-1}-(y+1)\)

\(\Leftrightarrow 3(y^2-3y+2)=\frac{3y-2-y^2}{\sqrt{3y-2}+y}+\frac{3y-2-y^2}{\sqrt{5y-1}+y+1}\)

\(\Leftrightarrow (y^2-3y+2)\left[3+\frac{1}{\sqrt{3y-2}+y}+\frac{1}{\sqrt{5y-1}+y+1}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn lớn hơn 0. Do đó \(y^2-3y+2=0\Leftrightarrow y=1\) hoặc \(y=2\)

Kéo theo \(x=0\) hoặc x=1

TH2: \(2x=t=y-1\)

\(\Leftrightarrow y=2x+1\). Thay vào PT(2)

\(4x^2-(2x+1)^2+x+4=\sqrt{4x+1}+\sqrt{9x+4}\)

\(3-3x=\sqrt{4x+1}+\sqrt{9x+4}\)

\(\Leftrightarrow \sqrt{4x+1}-1+\sqrt{9x+4}-2+3x=0\)

\(\Leftrightarrow \frac{4x}{\sqrt{4x+1}+1}+\frac{9x}{\sqrt{9x+4}+2}+3x=0\)

\(\Leftrightarrow x\left(\frac{4}{\sqrt{4x+1}+1}+\frac{9}{\sqrt{9x+4}+2}+3\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0. Do đó x=0 kéo theo \(y=1\)

Vậy \((x,y)\in\left\{(0;1);(1;2)\right\}\)

30 tháng 3 2017

a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :

\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)

c) Cách làm tương tự như pt a ta có :

\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)

d) Tương tự ta có :

\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
10 tháng 1 2018

Lời giải:

Lấy phương trình (1) nhân với $11$ rồi trừ đi phương trình (2) ta có:

\(11(x^2-y^2)-(x^2+y^2)=(11-11xy)-(3xy+11)\)

\(\Leftrightarrow 10x^2-12y^2=-14xy\)

\(\Leftrightarrow 5x^2-6y^2+7xy=0\)

\(\Leftrightarrow (5x-3y)(x+2y)=0\)

TH1 : \(5x-3y=0\Leftrightarrow x=\frac{3}{5}y\)

Thay vào PT(1): \(\Rightarrow \frac{-16}{25}y^2=1-\frac{3}{5}y^2\Leftrightarrow \frac{-1}{25}y^2=1\) (vô lý)

TH2: \(x+2y=0\Leftrightarrow x=-2y\)

\(\Leftrightarrow 3y^2=1+2y^2\Leftrightarrow y^2=1\)

\(\Leftrightarrow y=\pm 1\Rightarrow x=\mp 2\) (thử lại thấy đúng)

Vậy \((x,y)=(2; -1); (-2; 1)\)