Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)
3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\left(1\right)\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\left(2\right)\end{matrix}\right.\)ĐK: \(x\ne1;y\ne-2\)
(1)\(\Leftrightarrow1+\dfrac{2}{x-1}+3-\dfrac{6}{y+2}=7\Leftrightarrow\dfrac{2}{x-1}-\dfrac{6}{y+2}=3\)
Đặt \(A=\dfrac{1}{x-1};B=\dfrac{1}{y+2}\)
\(\Rightarrow\left\{{}\begin{matrix}2A-6B=3\\2A-5B=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{9}\\y=-1\end{matrix}\right.\)(TM)
Vậy hpt có nghiệm là \(\left(\dfrac{11}{9};-1\right)\).
b)ĐK: \(y\ge-1\)
Đặt \(A=x^2-2x;B=\sqrt{y+1}\left(B\ge0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2A+B=0\\3A-2B=-7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A=-1\\B=2\end{matrix}\right.\)(TM)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=1\end{matrix}\right.\)
Vậy hpt có nghiệm là (-1;1);(1;1).
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
Nam tính tiếp câu b để tìm ra nghiệm của bài toán nhé.
\(\left\{{}\begin{matrix}3\sqrt{2x-1}-\dfrac{y}{y+1}=1\\\sqrt{2x-1}+\dfrac{2y}{y+1}=5\end{matrix}\right.\left(x\ge\dfrac{1}{2};y\ne-1\right)\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x-1}\\b=\dfrac{y}{y+1}\end{matrix}\right.\left(a\ge0\right)\)
hệ pt trở thành \(\left\{{}\begin{matrix}3a-b=1\\a+2b=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6a-2b=2\left(1\right)\\a+2b=5\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right)\Rightarrow7a=7\Rightarrow a=1\Rightarrow b=2\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2x-1}=1\\\dfrac{y}{y+1}=2\end{matrix}\right.\)
\(\sqrt{2x-1}=1\Rightarrow x=1\)
\(\dfrac{y}{y+1}=2\Rightarrow2y+2=y\Rightarrow y=-2\)
Vậy hệ có bộ nghiệm (x,y) là \(\left(1,-2\right)\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Đặt: \(\sqrt{2x+1}=a;\dfrac{1}{\left|y+3\right|}=b\left(a\ge0;b>0\right)\)
Hệ Phương trình lúc này trở thành:
\(\left\{{}\begin{matrix}a+2b=3\\2a+\dfrac{3}{4}b=5\end{matrix}\right.\)
Dễ dàng giải đc hệ pt trên và tìm ra a,b rồi suy ra x,y
P.s: Bạn lm tiếp đc chứ ??
Đặt \(\sqrt{2x-1}=a;\sqrt{3-y}=b\)
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{5}{b}=7\\\dfrac{3}{a}-\dfrac{7}{b}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{15}{b}=21\\\dfrac{3}{a}-\dfrac{7}{b}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{22}{b}=22\\\dfrac{1}{a}+\dfrac{5}{b}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-y=1\\2x-1=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=\dfrac{5}{8}\end{matrix}\right.\)