K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10

\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)

⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000

⇔ 7975\(x\) = 1196250

⇔ \(x\) = \(\dfrac{1196250}{7975}\)

\(x \) = 150

 

27 tháng 1 2018

-90

27 tháng 1 2018

\(\dfrac{10-x}{100}\) + \(\dfrac{20-x}{110}\)+\(\dfrac{30-x}{120}\)=3

<=> \(\dfrac{10-x}{100}\)-1+\(\dfrac{20-x}{110}\)-1+\(\dfrac{30-x}{120}\)-1 = 0

<=> \(\dfrac{-x-90}{100}\)+\(\dfrac{-x-90}{110}\)+\(\dfrac{-x-90}{120}\)=0

<=> (-x-90) ( \(\dfrac{1}{100}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{120}\))=0

<=> (-x-90) = 0 ( do 1/100 +1/110+1/120 khác 0)

<=> -x-90 = 0

<=> -x = 90

<=> x =-90

Vậy nghiệm của pt là x=-90

8 tháng 2 2019

DƯƠNG PHAN KHÁNH DƯƠNG @Mysterious Person

10 tháng 2 2019

Y

NV
11 tháng 1 2019

\(\dfrac{1.2}{1.1}.\dfrac{2.3}{2.2}.\dfrac{3.4}{3.3}.\dfrac{4.5}{4.4}...\dfrac{10.11}{10.10}\left(x-2\right)=-20x+40\)

\(\Leftrightarrow\dfrac{2.3.4...11}{1.2.3...10}\left(x-2\right)=-20x+40\)

\(\Leftrightarrow11\left(x-2\right)=-20x+40\)

\(\Leftrightarrow11x-22=-20x+40\)

\(\Leftrightarrow31x=62\)

\(\Rightarrow x=2\)

14 tháng 1 2019

\(=>\dfrac{2\cdot1}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\dfrac{3\cdot4}{3\cdot3}\cdot......\cdot\dfrac{10\cdot11}{10\cdot10}\cdot\left(x-2\right)=-20\left(x+1\right)+60\)=>11*(x-2)=-20*(x+1)+60

=>11x-22=-20x-20+60

=>31x=62

=>x=2

NV
26 tháng 11 2018

\(\dfrac{1.2}{1^2}.\dfrac{2.3}{2^2}.\dfrac{3.4}{3^2}...\dfrac{9.10}{9^2}.\dfrac{10.11}{10^2}\left(x-2\right)=-20\left(x+1\right)+60\)

\(\Leftrightarrow\dfrac{1.2^2.3^2.4^2...10^2.11}{1^2.2^2.3^2....10^2}\left(x-2\right)+20\left(x+1\right)=60\)

\(\Leftrightarrow11\left(x-2\right)+20\left(x+1\right)=60\)

\(\Leftrightarrow31x=62\)

\(\Rightarrow x=2\)

a: \(\Rightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)

=>x+36=0

=>x=-36

b: \(\Leftrightarrow\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}-1\right)+\left(\dfrac{x-6}{1998}-1\right)+\left(\dfrac{x-4}{2000}-1\right)+\left(\dfrac{x-2}{2002}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)+\left(\dfrac{x-1996}{8}-1\right)+\left(\dfrac{x-1994}{10}-1\right)\)

=>x-2004=0

=>x=2004

5 tháng 1 2018

a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}-1+\dfrac{x-4}{101}-1+\dfrac{x-3}{102}-1=\dfrac{x-100}{5}-1+\dfrac{x-101}{4}-1+\dfrac{x-102}{3}-1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x-105\right)=0;\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}\right)\ne0\)

\(\Leftrightarrow x=105\)

b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)=0\)

\(\Leftrightarrow50-x=0;\left(\dfrac{1}{29}+\dfrac{1}{27}+\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}\right)\ne0\)

\(\Leftrightarrow x=50\)

24: 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)

\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)

\(\Leftrightarrow x+5=0\)

hay x=-5

22 tháng 2 2019

\(\dfrac{x-90}{10}+\dfrac{x-76}{12}=\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)

\(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)=\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)\)\(\Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}=\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}\)

\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}-\dfrac{1}{14}-\dfrac{1}{16}-\dfrac{1}{17}\right)=0\)

\(\Leftrightarrow x-100=0\)

\(\Rightarrow x=100\)

Vậy \(S=\left\{100\right\}\)