Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
c/ \(3x^2-6x+3-2=0\)
\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)
d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)
\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)
Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT
<=> x4+3x3=14x2+6x-4
\(\Leftrightarrow x^4+3x^3-\frac{7}{4}x^2-6x+4=\frac{49}{4}x^2\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2=\frac{49}{4}x^2\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2\right)^2-\frac{49}{4}x^2=0\)
\(\Leftrightarrow\left(x^2+\frac{3}{2}x-2+\frac{7}{2}x\right)\left(x^2+\frac{3}{2}x-2-\frac{7}{2}x\right)=0\)
\(\Leftrightarrow\left(x^2+5x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x-2=0\\x^2-2x-2=0\end{cases}}\)
Đến đây bn tự làm tiếp nha
tk mk vs
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
\(6x^4+25x^3+12x^2-25x+6=0.\)
\(\Leftrightarrow\left(2x^2+x-2\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)\left(x+3\right)\left(3x-1\right)=0\)
b) \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow x^2-6x+9+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow\left(x^2-3x+7\right)-\sqrt{x^2-3x+7}-20=0\)
Đặt \(\sqrt{x^2-3x+7}=t\left(t\ge0\right)\left(1\right)\)
\(\Rightarrow t^2-t-20=0\)
\(\Rightarrow x_1=5\left(TM\right);x_2=-4\left(KTM\right)\)
Thay t=5 vào (1), ta có :
\(\sqrt{x^2-3x+7}=5\)
\(\Leftrightarrow x^2-3x+7=25\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Rightarrow x_1=6;x_2=-3\)
vậy...
PT <=> (x4 - 2x3 + 3x2) + (- 4x3 + 8x2 - 12x) + (x2 - 2x + 3) = 0
<=> (x2 - 2x + 3)(x2 - 4x + 1) = 0
bạn ơi nhầm rồi đề bài là cộng 2 chứ có phải cộng 3 đâu