Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. . A B O H C D I
a) Vì AD là tiếp tuyến của (O)
=> \(AD\perp AB\)
=> \(\widehat{DAB}=90^o\)
CÓ: OA=OB=OC(=R)
=> CO là tiếp tuyến của ΔABC
Mà: \(CO=\frac{1}{1}AB\left(cmt\right)\)
=> ΔABC vuông tại C
=> \(AC\perp BC\)
Xét ΔABD vuông tại A(cmt), mà AC là đường cao(cmt)
=> \(BC\cdot BD=AB^2\) ( theo hệ thức trong tam giác vuông)
=> \(BC\cdot BD=\left(2\cdot OB\right)^2=4R^2\)
b) Có: OA=OC(cmt)
=> ΔOAC cân tại O
=> \(\widehat{ACO}=\widehat{CAO}\)
Xét ΔACD vuông tại C(cmt)
mà: CI là tiếp tuyến ứng vs cạnh AD
=> IC=IA
=> ΔIAC cân tại I
=> \(\widehat{IAC}=\widehat{ICA}\)
Có: \(\widehat{IAC}+\widehat{CAO}=\widehat{DAB}=90^o\)
=> \(\widehat{ICA}+\widehat{ACO}=90^o\)
Hay: \(\widehat{ICO}=90^o\)
=> IC là tiếp tuyến của (O)
Phần c đề sai
1, \(\sqrt{\frac{-12}{x-5}}\) xác định khi \(\frac{-12}{x-5}\) \(\ge\) 0
→x-5<0→x<5
3. xác định khi x-2>0 →x>2
5.xác định khi \(\frac{4x-5}{x+2}\ge0\)và x\(\ne\)-2
→\(\left[\begin{array}{nghiempt}\hept{\begin{cases}4x-5< 0\\x-3< 0\end{array}\right.\\\hept{\begin{cases}4x-5\ge0\\x-3>0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{5}{4}\\x< 3\end{array}\right.\\\hept{\begin{cases}x\ge\frac{5}{4}\\x>3\end{array}\right.\end{array}\right.}\)
Bài 7:
a: \(P=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}>0\)
b: Thay \(x=\dfrac{2}{2+\sqrt{3}}=4-2\sqrt{3}\) vào P, ta được:
\(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\sqrt{3}+3}{2}\)
b,\(\sqrt{\left(3x-2\right)^2}=4\)
\(\Leftrightarrow3x-2=4\)
\(\Leftrightarrow3x=6\Leftrightarrow x=2\)
vậy......
c,\(\dfrac{2\sqrt{x}-19}{4-\sqrt{x}}=\dfrac{1}{5}\) ĐKXĐ: x <16
\(\Rightarrow2\sqrt{x}-19=\dfrac{1}{5}\left(4-\sqrt{x}\right)\)
\(\Leftrightarrow2\sqrt{x}-19=\dfrac{4}{5}-\dfrac{1}{5}\sqrt{x}\)
\(\Leftrightarrow\dfrac{11}{5}\sqrt{x}=\dfrac{99}{5}\)
\(\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\left(KTMĐK\right)\)
vậy........
a/ ĐKXĐ: \(x\ge2\)
\(2\sqrt{4x-8}-\sqrt{9x-18}+\sqrt{36x-72}=14\)
\(\Leftrightarrow4\sqrt{x-2}-3\sqrt{x-2}+6\sqrt{x-2}=14\)
\(\Leftrightarrow7\sqrt{x-2}=14\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\) ( tmđk)
Vậy phương trình đã cho có nghiệm x=6