Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{x+1}{x-2}\)=1+\(\frac{3}{x-2}\)
để B nhận giá trị nguyên thì \(\frac{3}{x-2}\)phải nguyên hay 3\(⋮\)x-2\(\Leftrightarrow\)x-2\(\in\)Ư(3)
Ư(3)=\(\left\{-3;-1;1;3\right\}\)
ta có bảng sau:
x-2 | -3 | -1 | 1 | 3 |
x | -1 | 1 | 3 | 5 |
vậy x\(\in\left\{-1;1;3;5\right\}\)thì bt B có gt nguyên
\(A=\dfrac{1}{1-x}-\dfrac{2x}{x^3+x-x^2-1}\)
\(\Leftrightarrow A=\dfrac{1}{1-x}-\dfrac{2x}{\left(x^3-x^2\right)+\left(x-1\right)}\)
\(\Leftrightarrow A=\dfrac{1}{1-x}-\dfrac{2x}{x^2\left(x-1\right)+\left(x-1\right)}\)
\(\Leftrightarrow A=\dfrac{1}{1-x}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{1}{1-x}+\dfrac{2x}{\left(1-x\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{x^2+1}{\left(1-x\right)\left(x^2+1\right)}+\dfrac{2x}{\left(1-x\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{x^2+1+2x}{\left(1-x\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x+1\right)^2}{\left(1-x\right)\left(x^2+1\right)}\) ( cho hỏi kiểm tra đề có sai ko vậy, để mình làm tiếp )
Lên muộn còn con f làm nốt cho nè
f) \(x^2+1-\dfrac{x^4+1}{x^2+1}=\dfrac{\left(x^2+1\right)^2-\left(x^4+1\right)}{x^2+1}\)
\(=\dfrac{x^4+2x^2+1-x^4-1}{x^2+1}=\dfrac{2x^2}{x^2+1}\)
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
\(a,x^2-2xy+y^2=\left(x-y\right)^2\)
\(b,\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
\(c,\left(3x-5y\right)^3=27x^3-135x^2y+225xy^2-125y^3\)\(d,8-125a^3=\left(2-5a\right)\left(4+10a+25a^2\right)\)
\(e,\left(9x+y\right)\left(9x-y\right)=81x^2-y^2\)
\(f,\left(x+3\right)^3=x^3+3x^2+9x+27\)
Câu 6: Tìm giá trị nhỏ nhất của biểu thức : \(A=x^2-2x+2\)
\(A=x^2-2x+2\)
\(A=\left(x^2-2.x.1+1^2\right)+2\)
\(A=\left(x-1\right)^2+2\)
Nhận xét : \(\left(x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-1\right)^2+2\ge2\) với mọi x
\(\Rightarrow A\ge2\)
Vậy biểu thức A bằng 2 đạt được khi :
\(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)
33.
\(x^{10}+x^5+1\\ =x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\\ =x^8\left(x^2+x+1\right)-x^7\left(x^2+x+1\right)+x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ \left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
34.
đặt: \(t=x^2+x+1,5\)
khi đó:
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\\ =\left(t-0,5\right)\left(t+0,5\right)-12\\ =t^2-0,25-12\\ =t^2-12,25\\ =\left(t-3,5\right)\left(t+3,5\right)\\ =\left(x^2+x-2\right)\left(x^2+x+5\right)\)
35.
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\\ =\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\\ =\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)+1\\ =\left(x^2-5x+5\right)^2-1+1\\ =\left(x^2-5x+5\right)^2\)
36.
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+15\\ =\left(x^2-10x+16\right)\left(x^2-10x+24\right)+15\\ =\left(x^2-10x+20-4\right)\left(x^2-10x+20+4\right)+15\\ =\left(x^2-10x+20\right)^2-4^2+15\\ =\left(x^2-10x+20\right)^2-1\\ =\left(x^2-10x+19\right)\left(x^2-10x+21\right)\)
37.
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\\ =\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\\ =\left(x^2-10x+20-4\right)\left(x^2-10x+20+4\right)+16\\ =\left(x^2-10x+20\right)^2-4^2+16\\ =\left(x^2-10x+20\right)^2\)
38.
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)-24\\ =\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\\ =\left(x^2+5x+5\right)^2-1-24\\ =\left(x^2+5x+5\right)^2-5^2\\ =\left(x^2+5x+10\right)\left(x^2+5x\right)\\ =x\left(x+5\right)\left(x^2+5x+10\right)\)
39.
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\\ =\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\\ =\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\\ =\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\\ =\left(x^2+5x+5\right)^2-1+1\\ =\left(x^2+5x+5\right)^2\)
40.
\(a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\\ =a^3b^2-a^2b^3-c^3b^2+c^2b^3+a^2c^2\left(c-a\right)\\ =b^2\left(a^3-c^3\right)+b^3\left(c^2-a^2\right)+a^2c^2\left(c-a\right)\\ =b^2\left(a-c\right)\left(a^2+ac+c^2\right)+b^3\left(c-a\right)\left(c+a\right)+a^2c^2\left(c-a\right)\\ =-b^2\left(c-a\right)\left(a^2+ac+c^2\right)+\left(c-a\right)\left(cb^3+ab^3+a^2c^2\right)\\ =\left(c-a\right)\left(cb^3+ab^3+a^2c^2-a^2b^2-acb^2-b^2c^2\right)\)
42.
\(ab\left(b-a\right)-bc\left(b-c\right)-ac\left(c-a\right)\\ =ab^2-a^2b-b^2c+bc^2-ac\left(c-a\right)\\ =b^2\left(a-c\right)+b\left(c^2-a^2\right)-ac\left(c-a\right)\\ =\left(a-c\right)\left(b^2-ac+ba+bc\right)\)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
Từ \(\left|x+1\right|=2\Rightarrow\)\(\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
*)Xét \(x=1\Rightarrow B=\frac{x+1}{x-2}=\frac{1+1}{1-2}=-2\)
*)Xét \(x=-3\Rightarrow B=\frac{x+1}{x-2}=\frac{-3+1}{-3-2}=\frac{2}{5}\)
Cảm ơn bn nhiều nhiều nhiều