K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

15 tháng 11 2023

a: Thay x=1 và y=2 vào \(y=f\left(x\right)=ax^2\), ta được:

\(a\cdot1^2=2\)

=>a*1=2

=>a=2

=>\(y=2x^2\)

b: bảng giá trị:

x-2-1012
\(y=2x^2\)82028

 

Đồ thị:

loading...

19 tháng 10 2021

a: Đây là hàm số bậc nhất

a=2; b=-3

b: Đây là hàm số bậc nhất

a=-6; b=-7

c: Đây ko là hàm số bậc nhất

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

a: f(x)=3x^2

a=3>0

=>Hàm số đồng biến khi x>0 và nghịch biến khi x<0

b: f(1)=f(-1)=3*1^2=3

f(2)=3*2^2=12

f(-4)=3*(-4)^2=48

c: f(x)=48

=>x^2=48/3=16

=>x=4 hoặc x=-4

d; loading...

Các hàm số a,b,e là các hàm số bậc nhất

2 tháng 1 2022

Giải thích chưa