Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a) (2x)2-2.2x.(3/2)+(3/2)2=(2x-3/2)2
b) 4(x2+2x+1)-12x-3=4x2-4x+1=(2x)2-2.2x.1+12=(2x-1)2
c) (5x)2-2.5x.2y+(2y)2=(5x-2y)2
Bài 5:
a) (x+3)3
b)[ \(\left[\left(\sqrt{3}x\right)+2\right]^3\)]
c) (3x+31)3
d) \(\left[x+\sqrt{2}y\right]^3\)
a) Theo đề ra, Ta thấy: \(z^2-x^2=-\left[\left(y^2-z^2\right)+\left(x^2-y^2\right)\right]\) . Thay vào đã thức A. Ta có:
\(A=x\left(y^2-z^2\right)-y\left[\left(y^2-z^2\right)+\left(x^2-y^2\right)\right]+z\left(x^2-y^2\right)\)
\(=x\left(y^2-z^2\right)-y\left(y^2-z^2\right)-y\left(x^2-y^2\right)+z\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(y^2-z^2\right)-\left(y-z\right)\left(x^2-y^2\right)=\left(x-y\right)\left(y-z\right)\left(y+z\right)-\left(y-z\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(y-x\right)\)
*Nếu thích có thể viết gọn 1 số bước..... tớ chỉ làm vậy cho cậu đọc hiểu nhanh hơn thôi *
b) Theo đề ra, ta thấy: \(c-a=-\left[\left(a+b\right)-\left(b+c\right)\right]\). Thay vào, ta có:
\(B=\left(a+b\right)^3-\left[\left(a+b\right)-\left(b+c\right)\right]^3-\left(b+c\right)^3=\left(a+b\right)^3-\left[\left(a+b\right)^3-3\left(a+b\right)^2\left(b+c\right)+3\left(a+b\right)\left(b+c\right)^2-\left(b+c^3\right)\right]-\left(b+c\right)^3\)
= \(=3\left(a+b\right)\left(b+c\right)\left(a+b-b-c\right)=3\left(a+b\right)\left(b+c\right)\left(a-c\right)\)
Nếu không thấy được đoạn phía sau thì thu nhỏ màn hình trang web đó tí 1 là được nhé ;)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
a^2 + 4b^2 - 16 + 4ab
= (a^2 +4ab +4b^2)-16
= (a+2b)^2 -4^2
=(a+2b-4)(a+2b+4)
:v, nhìn đề muốn mỏi mắt, bắt đầu từ câu 1 tự luận hả bạn
a) \(\sqrt{169}=13\) và \(\sqrt{196}=14\)
bài 3 :
a) \(A=\frac{\sqrt{72}}{\sqrt{2}}+2\frac{\sqrt{27}}{\sqrt{3}}-3\frac{\sqrt{28}}{\sqrt{63}}=\frac{22}{3}\)tương tự
\(\widehat{HAD}+\widehat{HDA}=\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ADC}\right)=90^0\)
nên \(\widehat{AHD}=90^0\)
=>GA\(\perp\)ED
\(\widehat{GAB}+\widehat{GBA}=\dfrac{1}{2}\left(\widehat{BAD}+\widehat{ABC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{AGB}=90^0\)
\(\widehat{EDC}+\widehat{ECD}=\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{DEC}=90^0\)
Xét tứ giác EFGH có \(\widehat{HEF}=\widehat{EHG}=\widehat{HGF}=90^0\)
nên EFGH là hình chữ nhật
Bài 2:
a: \(\Leftrightarrow4x^2=9\)
=>(2x-3)(2x+3)=0
hay \(x\in\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\)
b: \(\Leftrightarrow4x^2-4x+1-4x^2+12x-x+3=-3\)
\(\Leftrightarrow7x+4=-3\)
hay x=-1
Bài 3:
x=2013
nên x+1=2014
\(A=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+2014\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+2014\)
=2014-x
=2014-2013=1