Giusp em với mọi người ạ. R...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

\(b,\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{\sqrt{15}}=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(d,\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\left(\sqrt{ab}-\sqrt{bc}\right)}=\sqrt{ab}+\sqrt{bc}=\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)\)

\(e,\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\left(\sqrt{\dfrac{a}{b}+\dfrac{2b.\sqrt{ab}}{b}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\sqrt{a}\sqrt{a+2b\sqrt{ab}}+b\sqrt{a^2}\)

\(=a\sqrt{a^2+2ab\sqrt{ab}}+ab\)

\(=a\left(\sqrt{a^2+2ab\sqrt{ab}}+b\right)\)

\(f,\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)

\(=\left(a-1\right)^2=a^2-2a+1\)

19 tháng 8 2021

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\left(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{1}{\sqrt{x}+1}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

19 tháng 8 2021

bạn bổ sung đk hộ mình ý 2 là : \(x\ge0;x\ne1\)nhé 

22 tháng 8 2021

Với \(x\ge0;x\ne\pm16\)

\(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\)

\(=\left(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\right):\frac{x+16}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{x-16}\)

5 tháng 2 2022

Đề bài đâu rồi em?

NM
29 tháng 8 2021

ta có 

\(A=B.\left|x-4\right|\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}.\left|x-4\right|\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

Vậy :

\(\orbr{\begin{cases}\sqrt{x}+2=x-4\\\sqrt{x}+2=-x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

29 tháng 8 2021

bạn cs chắc đây là đáp án đúng chứ

23 tháng 8 2021

hôm qua mình làm B rồi nhé 

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}}{x+\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)Với x >= 0 ; \(x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

23 tháng 8 2021

CẢM MƠN ANH TÚ NHIỀU Ạ

31 tháng 8 2021

hình 1 : cho tam giác ABC vuông tại A, hạ đường cao AH, H thuộc BC 

Xét tam giác ABC vuông tại A, đường AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=y=\frac{AB^2}{BC}=\frac{225}{17}\)cm 

=> \(CH=x=BC-y=17-\frac{225}{17}=\frac{64}{17}\)cm 

* Áp dụng hệ thức : \(AC^2=c=CH.BC=\frac{64}{17}.17=64\Rightarrow AC=8\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=h=\frac{AB.AC}{BC}=\frac{15.8}{17}=\frac{120}{17}\)cm 

tương tự hình 2 ; 3 

1 tháng 9 2021

làm ko làm nốt luôn đi

dùng đã bt rồi nhưng cần kết quả để so sánh sai ở đâu

3 tháng 9 2021

Bài 2a 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm 

-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm 

Áp dụng định lí Pytago của tam giác ABH vuông tại H 

\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm 

3 tháng 9 2021

Bài 2c 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm