Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)
c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)
Có \(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)
Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =
b) Phương trình √3x2 – (1 - √3)x – 1 = 0
Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =
c) (2 - √3)x2 + 2√3x – (2 + √3) = 0
Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0
Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 =
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)
Theo vi et ta có
\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)
Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)
\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)
\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)
\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)
\(=p^2-pq-pq+1+q^2-2+1\)
\(=p^2-2pq+q^2=\left(p-q\right)^2\)
a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)
Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)
\(=m^2+n^2-mn-m-n+1\)
\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)
Vậy có 1 trong 2 phương trình có nghiệm
a)x1=1
x2=1-m
b)x1=-1
x2=-5/2
c)x1=1
x2=-(c-a)/a-b