Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3-x+x}{3-x}=\frac{5x\left(x+2\right)+2\left(x+2\right)\left(3-x\right)}{\left(x+2\right)^2\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{\left(5x+2\left(3-x\right)\right)\left(x+2\right)}{\left(x+2\right)^2\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{5x+2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{5x}{\left(x+2\right)\left(3-x\right)}+2\)
\(\frac{3}{3-x}-2=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)
\(\frac{3-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)
\(3-2X\left(3-x\right)=5x\)
\(3-6+2x=5x\)
chị có thể tự giải tiếp ạ
e là hs lớp 7
cảm ơn e "dang long vu'' chị làm xong thấy cái j nó sai sai nhưng k biết sai chỗ nào nên muốn dò lại bài thôi cảm ơn e nha
\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x+1+x-1\right)\left(x+1-x+1\right)=6\left(x^2+x+1\right)\)
\(\Leftrightarrow2x.2=6x^2+6x+6\)
\(\Leftrightarrow4x=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2x+6=0\)
Ta có \(\Delta=2^2-4.6.6< 0\)
Vậy pt vô nghiệm
\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)
\(\Leftrightarrow\left[\left(x+1\right)-\left(x-1\right)\right].\left[\left(x+1\right)+\left(x-1\right)\right]=6\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=6x^2+6x+6\)
\(\Leftrightarrow2.2x=6x^2+6x+6\)\(\Leftrightarrow4x=6x^2+6x+6\)
\(\Leftrightarrow6x^2+2x+6=0\)\(\Leftrightarrow3x^2+x+3=0\)( vô nghiệm vì \(1^2< 4.3.3\)hay \(1< 36\))
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
\(giải:\)
\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)
\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)
\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)
\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)
\(\Leftrightarrow\frac{12x+20}{15}=0\)
\(\Rightarrow12x+20=0\)
\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)
vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)
\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)
\(mà\)\(x^2+10x+16>0\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
vậy x=4 là nghiệm của phương trình
\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)
\(\Leftrightarrow8x-16=0\)
\(\Leftrightarrow8\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
vậy x=2 là nghiệm của phương trình
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
ko ai giải đc à, giúp mk đi mà mau lên đang cần gấp, please
RẤT nhieu bn giai dc vi các pt này dễ nhung k ai giai vi nó dài ,làm mệt mà kè nhờ vả k biet ơn, k coi trọng chât xám
toàn là h tảo lao nên ng tài k dc trọng dụng , kẻ bât tai thi k giai dc, bởi z ng tài chỉ xem bài nào khó, k dài thi giai, dc kdc h cũng k cần
BPT\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)\left(x-1\right)\left(x^2+x+1\right)\left(3-x\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(3-x\right)\left(x+1\right)\ge0\) VÌ \(\left(\left(x^2+3x+9\right).\left(x^2+x+1\right)>0với\forall x\right)\)
\(\Leftrightarrow\left(x-3\right)^2.\left(1-x\right)\left(1+x\right)\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge0\left(vì\left(x-3\right)^2\ge0voi\forall x\right)\)
\(\Leftrightarrow-1\le x\le1\)
Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2
<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0
<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0
<=> x4 - x3 - x2 - 5x - 2 = 0
?