K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

\(\sqrt{4x-20}\)- 3\(\sqrt{\dfrac{x-5}{9}}\)=2

= \(\sqrt{4x-4.5}\)-3\(\sqrt{\dfrac{x-5}{9}}\)=2

= 2.2\(\sqrt{x-5}\)-3.9\(\sqrt{x-5}\)=2

= -23\(\sqrt{x-5}\)=2

= -23.x-5=2

=-23x=2+5

-23x =7

x =\(\dfrac{-7}{23}\)

x= -0.3

28 tháng 7 2017

\(x=9\)

23 tháng 6 2018

\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :

\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0

\(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )

⇔ x ∈ ∅

b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :

\(x^2+4x+5\) ≥ 0

Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)

Vậy , ........

c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :

\(2x^2+4x+5\) ≥ 0

Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)

Vậy ,.........

Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)

\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

19 tháng 6 2019

Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

19 tháng 6 2019

tớ ghi thêm cái điề kiện

Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phươngCăn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Cau 1: 

a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)

c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)

TH1: c>0

\(C=\dfrac{c+1}{c-1}\)

TH2: c<0

\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)

22 tháng 8 2017

\(\left\{{}\begin{matrix}x\ge-\dfrac{3}{5}\\5x+3=3-\sqrt{2}\Rightarrow x=\dfrac{-\sqrt{2}}{5}>\dfrac{-3}{5}\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{\sqrt{2}}{-5}\)

22 tháng 8 2017

Đề bài là giải phương trình cùng với hằng đẳng thức \(\sqrt{A}=\left|B\right|\)

Sửa đề: \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\dfrac{3\sqrt{x-5}}{3}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>2 căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

28 tháng 9 2017

\(\dfrac{2}{3}\sqrt{4x^2-20}+2\sqrt{\dfrac{x^2-5}{9}}-3\sqrt{x^2-5}=2\)

\(\Leftrightarrow\dfrac{2}{3}.2\sqrt{x^2-5}+2\dfrac{\sqrt{x^2-5}}{3}-3\sqrt{x^2-5}=2\)

\(\Leftrightarrow\dfrac{4}{3}\sqrt{x^2-5}+\dfrac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=2\)

\(\Leftrightarrow\left(\dfrac{4}{3}+\dfrac{2}{3}-3\right)\sqrt{x^2-5}=2\)

\(\Leftrightarrow-\sqrt{x^2-5}=2\)

\(-\sqrt{x^2-5}\) \(\le\)0 nên mình nghĩ phương trình vô \(\eta\) nhé :))

28 tháng 9 2017

\(\dfrac{2}{3}\sqrt{4x^2-20}+2\sqrt{\dfrac{x^2-5}{9}}-3\sqrt{x^2-5}=2\)

\(\Leftrightarrow\dfrac{4}{3}\sqrt{x^2-5}+\dfrac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=2\)

\(\Leftrightarrow-\sqrt{x^2-5}=2\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)