Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{5x}{10}=\dfrac{3y}{9}=\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\end{matrix}\right.\)
b) \(\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{5^2}=\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\end{matrix}\right.\)
c) Nếu phải dùng tính chất của dãy tỉ số bằng nhau thì mình không chắc mình làm đúng, thôi thì:
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Vì \(x.y=10\) nên \(2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1.2=2\\x=\left(-1\right).2=2\end{matrix}\right.\\\left[{}\begin{matrix}y=1.5=5\\y=\left(-1\right).5=-5\end{matrix}\right.\end{matrix}\right.\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a ) \(7x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{7}\) và \(x-y=16\)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
\(\Rightarrow\dfrac{x}{3}=-4\Leftrightarrow x=-12\)
\(\Rightarrow\dfrac{x}{7}=-4\Leftrightarrow x=-28\)
Vậy .................
b ) \(\dfrac{x}{2}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Leftrightarrow x=2k;y=5k\)
Mà \(x.y=10\)
\(\Rightarrow2k.5k=10\Leftrightarrow10k^2=10\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
2 TH xảy ra :
-Với k = 1 , thì :
\(\left[{}\begin{matrix}x=2.1=2\\y=5.1=5\end{matrix}\right.\)
- Với k=-1, thì :
\(\left[{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Vậy.............
c ) \(\dfrac{x}{4}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{8}=\dfrac{5y}{15}\) và \(2x+5y=69\)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x}{8}=\dfrac{5y}{15}=\dfrac{2x+5y}{8+15}=\dfrac{69}{23}=3\)
\(\Rightarrow\dfrac{2x}{8}=3\Leftrightarrow2x=24\Leftrightarrow x=12\)
\(\Rightarrow\dfrac{5y}{15}=3\Leftrightarrow5y=45\Leftrightarrow y=9\)
d ) \(5x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{4x}{12}=\dfrac{3y}{15}\) và \(4x-3y=-99\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{-99}{-3}=33\)
\(\Leftrightarrow\dfrac{4x}{12}=33\Leftrightarrow4x=396\Leftrightarrow x=99\)
\(\Rightarrow\dfrac{3y}{15}=33\Leftrightarrow3y=495\Leftrightarrow y=165\)
Vậy .......
a. \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)
\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)
\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)
\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)
\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)
b)
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{5x-5}{10}=\dfrac{3y+9}{12}=\dfrac{4z-20}{24}\)
\(\Rightarrow\dfrac{\left(5x-3y-4z\right)-\left(5+9-20\right)}{10-12-24}=\dfrac{46+6}{-26}=-2\)
\(\Rightarrow x-1=-4\Rightarrow x=-3\)
\(\Rightarrow y+3=-8\Rightarrow y=-11\)
\(\Rightarrow z-5=-12\Rightarrow-7\)
a) Ta có :\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)\(=\dfrac{5x+2y+z}{555+444+333}=\dfrac{1100}{1332}=\dfrac{275}{333}\)
Từ đó tìm được x;y;z
b) Từ \(\dfrac{x}{2}=\dfrac{y}{3}\) \(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)
Đặt \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4k\\y^2=9k\end{matrix}\right.\)
\(\Rightarrow x^2\cdot y^2=4k\cdot9k=52\)
\(\Rightarrow36k^2=52\)
\(\Rightarrow k^2=\dfrac{13}{9}\) (sai đề)
b: Sửa đề: x^2+y^2=52
Đặt x/2=y/3=k
=>x=2k; y=3k
x^2+y^2=52
=>4k^2+9k^2=52
=>k^2=4
TH1: k=2
=>x=4; y=6
TH2: k=-2
=>x=-4; y=-6
c: Đặt x/5=y/3=k
=>x=5k; y=3k
x^2-y^2=16
=>25k^2-9k^2=16
=>k^2=1
TH1: k=1
=>x=5; y=3
TH2: k=-1
=>x=-5; y=-3
d: Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: xy=54
=>2k*3k=54
=>6k^2=54
=>k^2=9
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
e: Đặt x/4=y/3=k
=>x=4k; y=3k
Ta có: xy=12
=>4k*3k=12
=>k^2=1
TH1: k=1
=>x=4; y=3
TH2: k=-1
=>x=-4; y=-3
Bài 1:
a) \(\dfrac{x}{15}=\dfrac{-2}{3,5}\)\(\Rightarrow x=\dfrac{15\cdot\left(-2\right)}{3,5}=-\dfrac{60}{7}\)
b) \(\dfrac{16}{x}=\dfrac{x}{25}\)\(\Rightarrow x^2=16\cdot25\Rightarrow x^2=400\Rightarrow x=\pm20\)
c) \(\dfrac{0,5}{0,7}=\dfrac{-0,1}{5x}\)\(\Rightarrow5x=\dfrac{\left(-0,1\right)\cdot0,7}{0,5}=-\dfrac{7}{50}\Rightarrow x=\dfrac{-\dfrac{7}{50}}{5}=-0,028\)
Bài 3:
a) Theo đề, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}\) và \(x+y=60\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=50\)
b) Theo đề ta có:
\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=-5\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{-5}{-2}=2,5\)
\(\Rightarrow\dfrac{x}{3}=2,5\Rightarrow x=7,5\)
\(\Rightarrow\dfrac{y}{5}=2,5\Rightarrow y=12,5\)
c) Theo đề ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(y+z-x=8\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{y+z-x}{4+6-2}=\dfrac{8}{8}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\)
\(\Rightarrow\dfrac{z}{6}=1\Rightarrow z=6\)
d) Theo đề ta có
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\) và \(x+y-z=50\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{x+y-z}{9+12-16}=\dfrac{50}{5}=10\)
\(\Rightarrow\dfrac{x}{9}=10\Rightarrow x=90\)
\(\Rightarrow\dfrac{y}{12}=10\Rightarrow y=120\)
\(\Rightarrow\dfrac{z}{16}=10\Rightarrow z=160\)
e) Theo đề ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)và \(2x+3y+5z=86\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot3+3\cdot4+5\cdot5}=\dfrac{86}{43}=2\)
\(\Rightarrow\dfrac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\dfrac{y}{4}=2\Rightarrow y=8\)
\(\Rightarrow\dfrac{z}{5}=2\Rightarrow z=10\)
f) Theo đề ta có
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)và \(x+y+z=-28\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{-28}{14}=-2\)
\(\Rightarrow\dfrac{x}{2}=-2\Rightarrow x=-4\)
\(\Rightarrow\dfrac{y}{5}=-2\Rightarrow y=-10\)
\(\Rightarrow\dfrac{z}{7}=-2\Rightarrow z=-14\)
g) Theo đề ta có
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\) và \(2x^2+y^2+3z^2=316\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{2x^2+y^2+3z^2}{2\cdot3^2+7^2+3\cdot2^2}=\dfrac{316}{79}=4\)
\(\Rightarrow\dfrac{x}{3}=4\Rightarrow x=12\)
\(\Rightarrow\dfrac{y}{7}=4\Rightarrow y=28\)
\(\Rightarrow\dfrac{z}{2}=4\Rightarrow z=8\)
a,\(\dfrac{x}{2}=\dfrac{y}{3}\) <=> \(\dfrac{5x}{10}=\dfrac{3y}{9}\)
Áp dụng T/c dãy tỉ số BN, ta có:
\(\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\). Từ đó suy ra: x=2.10:5=4
y=2.9:3=6
b, \(\dfrac{x}{3}=\dfrac{y}{5}\) <=> \(\dfrac{x^2}{9}=\dfrac{y^2}{25}\)
Áp dụng ......, ta có:
\(\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\). Từ đó suy ra: x2=2.9=18=>x=..... (xem lại đề)
y2=2.25=50=>y=.... (xem lại đề)
c, \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x.y}{2.5}=\dfrac{10}{10}=1\)
=> x=1.2=2
y=1.5=5