Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi mỗi phần cần chia là x;y;z
(ĐK: x;y;z > 0)
Theo bài ra ta có:
- Số 267 được chia thành 3 phần
⇒ x + y + z = 267
- Phần thứ nhất và phần thứ hai tỉ lệ nghịch với \(\frac{1}{3}\) và \(\frac{1}{5}\)
\(\Rightarrow\frac{1}{3}x=\frac{1}{5}y\\ \Rightarrow\frac{x}{3}=\frac{y}{5}\left(1\right)\)
- Phần thứ nhất và phần thứ ba tỉ lệ nghịch với \(\frac{1}{7}\) và \(\frac{1}{11}\)
\(\Rightarrow\frac{1}{7}x=\frac{1}{11}z\\ \Rightarrow\frac{x}{7}=\frac{z}{11}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{5}\\\frac{x}{7}=\frac{y}{11}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=\frac{y}{35}\\\frac{x}{21}=\frac{z}{33}\end{matrix}\right.\\ \Rightarrow\frac{x}{21}=\frac{y}{35}=\frac{z}{33}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{21}=\frac{y}{35}=\frac{z}{33}=\frac{x+y+z}{21+35+33}=\frac{267}{89}=3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=3\\\frac{y}{35}=3\\\frac{z}{33}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\cdot21=63\\y=3\cdot35=105\\z=33\cdot3=99\end{matrix}\right.\)
Vậy 3 phần cần tìm là 63;105;99
gọi 3 phần được chia lần lượt là: a,b,c(a,b,c thuộc R)
theo bài ra: \(\frac{a}{5}=\frac{b}{6}\) suy ra \(\frac{a}{20}=\frac{b}{24}\)
\(\frac{b}{8}=\frac{c}{9}\) suy ra \(\frac{b}{24}=\frac{c}{27}\)
suy ra \(\frac{a}{20}=\frac{b}{24}=\frac{c}{27}\)
có :c-a=3
Áp dụng t/c dãy tỉ số bằng nhau
Ta có:\(\frac{a}{20}=\frac{b}{24}=\frac{c}{27}=\frac{c-b}{27-24}=\frac{150}{3}=50\)
suy ra \(\frac{a}{20}=50\Rightarrow a=1000\)
\(\frac{b}{24}=50\Rightarrow b=1200\)
\(\frac{c}{27}=50\Rightarrow c=1350\)
vậy ....
Gọi 3 phần được chia bởi số N lần lượt là x,y,z ( x;y;z > 0 ,x + y + z = N)
Theo đề phần thứ 3 hơn phần thứ 2 là 150 => z - y = 150
Vì phần thứ nhất và phần thứ hai TLT với 5 và 6 nên ta có : \(\frac{x}{5}=\frac{y}{6}\) (1)
Vì phần thứ hai và phần thứ ba TLT với 8 và 9 nên ta có : \(\frac{y}{8}=\frac{z}{9}\) (2)
Nhân cả hai vế của TLT (1) với \(\frac{1}{4}\) ta được \(\frac{x}{5}.\frac{1}{4}=\frac{y}{6}.\frac{1}{4}\) \(\Leftrightarrow\frac{x}{20}=\frac{y}{24}\)(3)
Nhân cả hai vế của TLT (2) với \(\frac{1}{3}\) ta được\(\frac{y}{8}.\frac{1}{3}=\frac{z}{9}.\frac{1}{3}\) \(\Leftrightarrow\frac{y}{24}=\frac{z}{27}\)(4)
Từ (3) ; (4) => \(\frac{x}{20}=\frac{y}{24}=\frac{z}{27}\) Áp dụng TC DTSBN ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{27}=\frac{z-y}{27-24}=\frac{150}{3}=50\)
\(\Rightarrow x=1000;y=1200;z=1350\)
\(\Rightarrow N=1000+1200+1350=3550\)
Vậy N = 3550
a) gọi 3 phần đó là x, y, z
ta có:
x/3 = y/4 = z/5 và x + y + z = 552
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46
x/3 = 46 => x = 46 x 3 = 138
y/4 = 46 => y = 46 x 4 = 184
z/5 = 46 => z = 46 x 5 = 230
vậy 3 phần đó là: 138; 184; 230
b) gọi 2 phần đó là a, b, c
ta có:
a phần 1/3=b phần 1/4=c phần 1/6 và a + b + c = 315
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a phần 1/3=b phần 1/4=c / 1/6=a+b+c phần 1/3+1/4+1/6=315 phần 3/4=420
a phần 1/3=420⇒a=140
b phần 1/4=420⇒b=105
c phần 1/6=420⇒c=70
vậy............
đây là toán nâng cao lớp 7 đúng ko