K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Gọi mỗi phần cần chia là x;y;z

(ĐK: x;y;z > 0)

Theo bài ra ta có:

- Số 267 được chia thành 3 phần

⇒ x + y + z = 267

- Phần thứ nhất và phần thứ hai tỉ lệ nghịch với \(\frac{1}{3}\)\(\frac{1}{5}\)

\(\Rightarrow\frac{1}{3}x=\frac{1}{5}y\\ \Rightarrow\frac{x}{3}=\frac{y}{5}\left(1\right)\)

- Phần thứ nhất và phần thứ ba tỉ lệ nghịch với \(\frac{1}{7}\)\(\frac{1}{11}\)

\(\Rightarrow\frac{1}{7}x=\frac{1}{11}z\\ \Rightarrow\frac{x}{7}=\frac{z}{11}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{5}\\\frac{x}{7}=\frac{y}{11}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=\frac{y}{35}\\\frac{x}{21}=\frac{z}{33}\end{matrix}\right.\\ \Rightarrow\frac{x}{21}=\frac{y}{35}=\frac{z}{33}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{21}=\frac{y}{35}=\frac{z}{33}=\frac{x+y+z}{21+35+33}=\frac{267}{89}=3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=3\\\frac{y}{35}=3\\\frac{z}{33}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\cdot21=63\\y=3\cdot35=105\\z=33\cdot3=99\end{matrix}\right.\)

Vậy 3 phần cần tìm là 63;105;99

15 tháng 1 2017

gọi 3 phần được chia lần lượt là: a,b,c(a,b,c thuộc R)

theo bài ra: \(\frac{a}{5}=\frac{b}{6}\) suy ra \(\frac{a}{20}=\frac{b}{24}\)

\(\frac{b}{8}=\frac{c}{9}\) suy ra \(\frac{b}{24}=\frac{c}{27}\)

suy ra \(\frac{a}{20}=\frac{b}{24}=\frac{c}{27}\)

có :c-a=3

Áp dụng t/c dãy tỉ số bằng nhau

Ta có:\(\frac{a}{20}=\frac{b}{24}=\frac{c}{27}=\frac{c-b}{27-24}=\frac{150}{3}=50\)

suy ra \(\frac{a}{20}=50\Rightarrow a=1000\)

\(\frac{b}{24}=50\Rightarrow b=1200\)

\(\frac{c}{27}=50\Rightarrow c=1350\)

vậy ....

15 tháng 1 2017

Gọi 3 phần được chia bởi số N lần lượt là x,y,z ( x;y;z > 0 ,x + y + z = N)

Theo đề phần thứ 3 hơn phần thứ 2 là 150 => z - y = 150

Vì phần thứ nhất và phần thứ hai TLT với 5 và 6 nên ta có : \(\frac{x}{5}=\frac{y}{6}\) (1)

Vì phần thứ hai và phần thứ ba TLT với 8 và 9 nên ta có : \(\frac{y}{8}=\frac{z}{9}\) (2)

Nhân cả hai vế của TLT (1) với \(\frac{1}{4}\) ta được \(\frac{x}{5}.\frac{1}{4}=\frac{y}{6}.\frac{1}{4}\) \(\Leftrightarrow\frac{x}{20}=\frac{y}{24}\)(3)

Nhân cả hai vế của TLT (2) với \(\frac{1}{3}\) ta được\(\frac{y}{8}.\frac{1}{3}=\frac{z}{9}.\frac{1}{3}\) \(\Leftrightarrow\frac{y}{24}=\frac{z}{27}\)(4)

Từ (3) ; (4) => \(\frac{x}{20}=\frac{y}{24}=\frac{z}{27}\) Áp dụng TC DTSBN ta có :

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{27}=\frac{z-y}{27-24}=\frac{150}{3}=50\)

\(\Rightarrow x=1000;y=1200;z=1350\)

\(\Rightarrow N=1000+1200+1350=3550\)

Vậy N = 3550

31 tháng 1 2016

giải dùm mk vs đi

31 tháng 1 2016

giải dùm mk vs đi

a)  gọi 3 phần đó là x, y, z

ta có:

x/3 = y/4 = z/5  và x + y + z = 552

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46

x/3 = 46          => x = 46 x 3 = 138

y/4 = 46         => y = 46 x 4 = 184

z/5 = 46          => z = 46 x 5  = 230

vậy 3 phần đó là:  138; 184; 230

b) gọi 2 phần đó là a, b, c

ta có:

a phần 1/3=b phần 1/4=c phần 1/6  và a + b + c = 315

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a phần 1/3=b phần 1/4=c / 1/6=a+b+c phần 1/3+1/4+1/6=315 phần 3/4=420

a phần 1/3=420⇒a=140

phần 1/4=420⇒b=105

c phần 1/6=420⇒c=70

vậy............

đây là toán nâng cao lớp 7 đúng ko